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SUMMARY 

The Soil Organic Carbon (SOC) Model Guidelines provide a comprehensive 

methodological framework for quantifying SOC stock changes in agricultural soils through 

modelling. These guidelines are designed to support SOC sequestration project 

developers, auditors, and validation/verification bodies (VVBs), and are complementary 

to the SOC Framework Methodology (SOC FM). 

The guidelines do not prescribe specific SOC models but instead focus on a standardized 

procedure applicable to a range of models. Models are treated as "black boxes"—

emphasis is placed on outputs, inputs, and validation, rather than internal mechanics. 

The document outlines a seven-step workflow for applying SOC models: defining 

modelling objectives, selecting a model, collecting necessary data, calibrating the model, 

validating the model, predicting and estimating uncertainty, and verifying model 

predictions over time. 

The most important advantage of the Guideline is a procedure to gradually minimizing 

measurements using statistically secured model assistance. 

Key modelling objectives include: 

• Estimating SOC stocks with ground-based measurements 

• Estimating SOC stock variance to inform sampling strategies. 

• Supporting model-assisted SOC estimation for improved accuracy. 

• Enabling model-based estimation for calculating total SOC stock changes. 
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The project context—including land use, soil types, climate, and management practices—

must be clearly defined to guide model selection and ensure relevance. Calibration and 

validation require robust, context-representative data, ideally derived from within the 

project boundaries. The guidelines provide detailed requirements for data quality, 

representativeness, statistical independence, and spatial/temporal consistency. 

Model validation is crucial when models are used for direct quantification (model-based 

estimation) and must meet specific performance metrics: bias, root mean square error 

(RMSE), and R² score. Validation datasets must be independent from calibration 

datasets, and visual and statistical documentation is required for verification. Models 

must be revalidated as new field data becomes available. 

The guidelines further emphasize uncertainty quantification and the need for 

transparency and reproducibility. They promote good scientific practices, including clear 

documentation of modelling decisions, data sources, assumptions, and limitations. 

In essence, these SOC Model Guidelines aim to standardize and enhance the credibility 

of SOC modelling efforts across diverse agricultural contexts, enabling reliable carbon 

quantification that supports climate mitigation and sustainable land management 

practices. 
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1. INTRODUCTION 

The growing significance of soil organic carbon (SOC) in climate change mitigation 

strategies requires accurate and scientifically robust SOC modelling approaches (Henry 

et al., 2022). To support the adoption of best practices in SOC modelling across the 

industry, Gold Standard for the Global Goals (GS4GG) has developed these guidelines to 

direct the process of SOC model selection, calibration, validation, and uncertainty 

handling. These guidelines provide a comprehensive framework for project developers 

and third-party auditors. They complement the GS4GG SOC Framework Methodology 

(SOC FM), bridging the gap between theoretical concepts and practical implementation 

of SOC models.  

Given the diversity of SOC sequestration projects and corresponding practices, as well 

as a myriad of available models for quantifying SOC stock changes that are each fit for 

different modelling objectives, these guidelines do not prescribe the use of specific 

models to represent specific ecosystem interactions. Instead, they have a special focus 

on the common outcomes produced when applying and evaluating any SOC model in the 

context of a SOC sequestration project. The models themselves are treated as “black 

boxes” that require certain inputs and produce certain outputs; the internal mechanisms 

of the models are not discussed.  

When planning to use a SOC model in a SOC sequestration project, it is key to first 

understand the specific context and objectives of the project, since local soil properties, 

climatic conditions, land use practices, and management strategies (e.g., conservation 

tillage) may critically influence the performance of the SOC model. Detailed knowledge 

of the project context and objectives ensures the selection of the most suitable SOC 

model and allows tailoring it to the unique environmental and operational conditions of 

the project.  

After clarifying the project context and modelling objectives, these guidelines delve into 

the critical aspects of model selection, data acquisition, model calibration, and model 

validation, underlining the importance of using project-specific data for all these stages. 

The most important metrics for model validation are provided, along with relevant 

thresholds to assess the applicability of a SOC model for a specific SOC sequestration 

project. The guidelines also outline methods for effective and statistically sound 

uncertainty estimation, which is crucial for assessing the reliability of SOC model 

predictions. Finally, recurring verification of the model outputs is put forward as a means 

to monitor the accuracy of the model in the specific SOC sequestration project over time 

and to repeatedly confirm its applicability in the project context.  

1.1 | Structure of SOC Model Guidelines 

These guidelines are primarily directed at SOC sequestration project developers to help 

them in the process of using models in their SOC sequestration projects. Additionally, 

there are some pointers for Validation and Verification Bodies (VVBs) on how to properly 

verify the use of the model. Sections 5 to 7 of these guidelines outline the typical 

sequence of steps required when applying a model in a SOC sequestration project. These 

sections are generally agnostic to particular methodologies but do include specific 

explanations of how to apply SOC models in the context of the SOC FM. As a framework 

https://www.zotero.org/google-docs/?gXMTAT
https://www.zotero.org/google-docs/?gXMTAT
https://globalgoals.goldstandard.org/402-luf-agr-fm-soil-organic-carbon-framework-methodolgy/
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methodology, the SOC FM was developed with a modular approach, allowing for 

extensions with activity modules that describe the exact activities to which it applies. 

The SOC FM explicitly names “improved agricultural practices” (p. 3) as its core focus. 

Accordingly, these guidelines focus on SOC models dedicated to quantifying SOC stock 

(changes) on agricultural lands with improved (in the context of SOC sequestration) 

agricultural practices.   

  

Figure 1. Modelling workflow in the context of a SOC sequestration project   

 

The typical steps necessary to quantify SOC stock (changes) in a SOC sequestration 

project using any SOC model are ordered and presented in the following sections:  

• Define the Modelling Objectives 

• Select an Appropriate Model 

• Collect the Required Data 

• Calibrate the Model 

• Validate the Model 

• Make Predictions and Estimate the Uncertainty of the Predictions 

• Verify the Model Predictions 

As shown in Figure 1, after determining the modelling objectives, selecting an 

appropriate model, and collecting sufficient data for model calibration and validation, the 

subsequent process of model calibration, validation, prediction, and verification follows 

an iterative cycle. This cycle has repeated recalibration and validation prior to making 

predictions and reverifying these predictions with ground-measured observations. 

Occasionally, a verification event can highlight the need for additional data collection or 

even the selection of a different model.   

Each section of these guidelines has roughly the same structure with the following 

subsections:  
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Subsection  Question addressed  

• Rationale  Why is this needed?  

• Requirements  What is required?  

• How-to  How can the requirements be met?  

• Required outputs  For the final outputs that need to be submitted to the 

Gold Standard Secretariat or the designated VVB, what 

shall they look like?  

 

In terms of required outputs in general:   

• The modelling objectives shall be communicated to the Gold Standard 

Secretariat before the start of the respective calculation period (i.e., before SOC 

stocks are quantified for the start of the calculation period).       

• No model validation is required when a model is used exclusively for variance 

estimation, which allows for efficient design-based SOC stock (change) estimation 

based on ground-measured samples. 

• When a model requires validation (i.e., when the model is used for Quantification 

Approach 2 in the SOC FM [pp.12-14]), the reproducible model calibration and 

validation report shall be submitted to the Gold Standard Secretariat before the 

start of the calculation period. Upon request from the responsible VVB, the full 

calibration and validation dataset shall be made available to the VVB for the 

purpose of verifying the reproducibility of the results.   

• When a model is used for direct quantification (prediction) of mean or total SOC 

stocks (change) (model-based estimation) as part of Quantification Approach 2 in 

the SOC FM at any point in the project, the mean/total SOC stock (change) 

predictions from the model shall be made available by the project developer to the 

Gold Standard Secretariat and VVB before soil sampling for model validation takes 

place. Official model validation and verification by the VVB can be done only with 

ground-measured observations that were taken after the model predictions were 

submitted.   

 

2. DEFINITIONS AND GLOSSARY 

2.1. DEFINITIONS 

Unless otherwise specified, the definitions from Section 2.1, pp. 6-8 of the SOC FM apply. 

In cases of doubt or contradictions, the definitions from the SOC FM overrule the 

definitions listed here.  

 

Term  Definition  

https://www.zotero.org/google-docs/?FO8Zu3
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Baseline scenario The activities that would occur in the absence of the proposed 

project (business as usual, or BAU). (SOC FM, Section 2.1, p. 6).  

Continuation of the historical land management practices that are 

being followed in [the] last five years before the project start date  

(BAU). (SOC FM, Section 6, p. 13)  

Baseline SOC 

stock 

Sum of [SOC] stocks in [the project’s spatial boundaries]. (SOC 

FM, Section 6, p. 14)  

For the first calculation period, [the SOC stock at the beginning of 

the calculation period within the project’s spatial boundaries] is 

equal to [the baseline SOC stock]. (SOC FM, Section 5, p. 12)  

SOCBL,y = [SOC stock] before the project start in stratum y 

[tCha-1]. (SOC FM, p. 15)  

Diachronic data Data measured from the same location unit (point, plot-

aggregate, field-aggregate) at multiple points (dates) in time to 
establish a time series of paired data.  

Model 
calibration/Model 

training 

The process of adapting any (hyper)parameters of a model to a 
specific project context.  

For machine learning models, “model training” is a more 
commonly used term than “model calibration.” Since process-

based models are already established in the SOC domain and 
machine learning models present an innovation in the industry, 

the term “model calibration” is used for both types of models 
throughout these guidelines.  

Model 

(hyper)parameter

s 

Model internal mechanics that might be calibrated but not 

changed after calibration from model run to model run in contrast 

to model input data. 

Model input data All data that is fed into a model to run a simulation or prediction. 

In statistical modelling, this is often referred to as the independent 

variable(s) or covariate(s) and in machine learning as feature(s) 

or predictor(s). In the process-based modelling domain, this 

refers to any measured or assumed input data ranging from initial 

SOC measurements to climate and management data. 

Model 

initialisation 

Part of model input data but specific to process-based modelling: 

setting initial conditions for process-based models to run, 

including the initial SOC measurements. 

Model selection The process of selecting an adequate model (version) for the 

declared modelling objectives and context.  

Model validation The demonstration of the selected SOC model’s suitability to 

achieve the declared modelling objectives. This shall be 

demonstrated by satisfying certain statistics thresholds when 

comparing the model’s predictions against ground-measured 

observations.  
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A demonstration that a model within its domain of 

applicability possesses a satisfactory range of accuracy consistent 

with the intended application of the model. (Rykiel, 1996)  

Model verification Evaluating the actual accuracy and uncertainty that the model 

achieved in the project area, using measured reference data 

collected in the project area at regular intervals after the project 

start.  

Modelling unit Refer to the “Definitions and References” section in the SOC FM.  

Prediction unit The smallest spatial unit on which a model produces predictions. 

Examples: individual points (in geographical space), pixels, 

parcels, farms.  

Process-based 

model 

A model that encodes the relationship between inputs and outputs 

purely or mostly based on scientific assumptions on the real-world 

processes that govern this relationship (antonym: statistical 

model). Examples: RothC [Rothamsted Carbon], DayCent [Daily 

Century].  

These often include several levels of process detail, e.g., plant 

organ > plant > canopy or cell > plant organ > plant.  

Project scenario Refer to the “Definitions and References” section in the SOC FM.  

Sampling unit The spatial level of granularity at which SOC reference values are 

sampled. Examples: individual points (in geographical space), 

pixels, fields, farms.  

For model validation and use, this shall be hierarchically 

consistent with the prediction unit, i.e., the physical sampling unit 

shall be small enough so that it can be spatially contained by the 

prediction unit. For example, the prediction units point, pixel, 

parcel, or farm can contain the sampling unit point, but a sampling 

unit field (e.g., composite field sample) cannot be used for model 

validation with a prediction unit point or pixel. In this case, the 

prediction unit shall become the field as well and model 

predictions shall be aggregated to that prediction unit, as 

described in Section 5.4.2 of these guidelines. 

Snapshot SOC 

stock The SOC stock at a single particular point in time.  

Statistical model A model that fits (“learns”) a relationship between input data and 

the target variable purely or mostly based on mathematical 

relationships of measured data, with little or no hard-coded 

scientific assumptions on the real-world processes that govern 

this relationship (antonym: process-based model). Examples: 

generalised linear models, random forest models, neural 

networks.  

https://www.zotero.org/google-docs/?Xwtbzu%22%20﷟HYPERLINK%20%22https://www.zotero.org/google-docs/?broken=IPWs9d
https://www.zotero.org/google-docs/?Xwtbzu%22%20﷟HYPERLINK%20%22https://www.zotero.org/google-docs/?broken=IPWs9d
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Target variable The entity under investigation that shall be predicted/simulated 

by the model. In SOC sequestration projects, this is typically the 

SOC stock at one point in time or the SOC stock change over a 

period of time. In statistical modelling, the term’s response or 

dependent variable is also commonly used. 

 

3. SCOPE, APPLICABILITY, AND ENTRY INTO FORCE 

3.1. Scope 

These guidelines provide methods to calculate project and/or leakage emissions resulting 

from the combustion of fossil fuels. 

3.2. Applicability 

a) These guidelines can be applied where carbon dioxide (CO2), methane (CH4), 

and nitrous oxide (N2O) emissions from fossil fuel combustion are calculated 

based on the quantity and properties such as chemical composition or net 

calorific value (NCV) of the fuel combusted. 

b) Methodologies and other methodological tools applying these guidelines shall 

specify the particular combustion process to which they are being applied. 

3.3. Entry into Force 

The date of entry into force of these guidelines is from the date of publication. 

 

4. NORMATIVE REFERENCES 

The following documents are to be referred: 

• Land-use & Forests Activity Requirements  

• Soil Organic Carbon Framework Methodology 

 

5. METHODOLOGY PROCEDURE 

5.1. Project Boundary 

Refer to SOC FM, Section 4, pp. 9-11 for the definition of the project boundary. 

5.2. Define the Modelling Objectives 

First, the goals for SOC modelling shall be identified, and the specific (spatial and 

temporal) context within which the SOC modelling goals shall be attained. These steps 

are critical for selecting an appropriate SOC model and collecting adequate validation 

data. 

https://globalgoals.goldstandard.org/203-ar-luf-activity-requirements/
https://globalgoals.goldstandard.org/402-luf-agr-fm-soil-organic-carbon-framework-methodolgy/
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Figure 2. Quantification objectives and goals from the SOC FM with the 

corresponding Equations 1 and 2 (SOC FM, p. 11)  

5.2.1 The Potential SOC Modelling Goals  

Box 1. Synopsis of modelling goals for projects with the SOC FM  

The ultimate goal of modelling within a SOC project is to quantify the SOC stock 

changes 𝛥CSOC, t-0 between two points in time, with t = end of calculation period, 0 = 

start of calculation period (the project). This change can be modelled directly or derived 

as the difference between the SOC stock snapshot at t=t - SOC stock snapshot at t=0. 

(See Box 3 in these guidelines.) SOC models, especially process-based models, have 

traditionally been developed, calibrated, and validated at small plot scales in research 

settings. Whether they can be applied to larger-scale farming systems needs to be 

validated and verified as these projects take place. This means that soil sampling and 

measurement are still required, at least in the first calculation periods of the project, 

to ensure that the selected SOC model is adequately calibrated and validated to 

quantify the SOC stock changes (via direct modelling of change or modelling of 

snapshots in time). 

This means that over the project life cycle, three different strategies can be employed 

for quantifying SOC stock (changes), with different roles for modelling: 

1. Design-based estimation: Quantification of SOC stock via soil sampling and 

measurements. Modelling can be used prior to the sampling campaign to 

quantify the SOC stock variance over the project’s spatial boundaries to 

delineate strata (modelling units) and determine the required sample size.  
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2. Model-assisted estimation quantification of SOC stock via modelling SOC 

stock, in addition to ground-measured samples, to increase the precision of a 

design-based estimate.  

3. Model-based estimation quantification of mean and total SOC stocks over the 

project’s spatial boundaries via a SOC model.    

 

With any SOC sequestration project, the primary objective is to quantify the removed 

emissions in tons of CO2e. This quantification is formalised in Equation 1 of the SOC FM 

(p. 11) and can be broken down into two secondary objectives:  

1. Quantify SOC sequestration as 𝛥𝐶𝑆𝑂𝐶, 𝑡−0.   

2. Quantify the project emissions (PEt-0), the leakage (LKt-0), and the buffer (BUF) 

emissions.  

These guidelines are exclusively concerned with the first of the two: the quantification of 

the SOC sequestration as the total SOC stock change within the project’s spatial and 

temporal boundaries and the corresponding uncertainty of this estimate. This is 

formalised in Equation 2 in the SOC FM (pp. 11-12, Figure 2), where 𝛥CSOC, t-0 stands for 

the change within the project’s spatial and temporal boundaries, SOC0 and SOCt stand 

for the SOC stock at the beginning and end of the calculation period, and UD stands for 

the corresponding uncertainty deduction.   

 

Box 2. The baseline in the SOC FM  

In SOC sequestration projects in general, the change in the project needs to be 

compared to a baseline. In the SOC FM, the baseline scenario is defined as the 

“continuation of the historical land management practices ... in the last five years 

before the project start date (BAU)” (p. 13), and the baseline SOC stocks are calculated 

as “the sum of stocks in [the project’s spatial boundaries in the year of the project 

start]” (p. 14). As a default, the SOC FM prescribes a static baseline with the 

assumption that SOC stock is at equilibrium (i.e., would not change) under the BAU 

baseline scenario. Thus, the baseline SOC stock is set equal to the initial SOC stock 

within the project’s spatial boundaries in the project start year (p. 12): “SOC0 is equal 

to SOCBL.” 

Since the definition of the baseline might change in newer versions of the SOC FM, the 

latest version shall be the definitive source to clarify the definition of the baseline 

scenario and the quantification of the baseline SOC stock. 

 

This means the following quantities can generally be modelled within the context of the 

SOC FM:  

• Mean, total, and variance of SOC stock change over the project's spatial 

boundaries (or individual modelling units) and over calculation/crediting period(s) 

(𝛥CSOC, t-0)  
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• Mean, total, and variance of SOC stock over the project's spatial boundaries (or 

individual modelling units) for a snapshot (project start [i.e., SOCo/SOCBL], middle, 

or end [SOCt])  

These guidelines focus on the latter (modelling snapshots) with the goal of applying 

Equation 2 in the SOC FM to derive 𝛥CSOC, t-0. This is in line with the SOC FM, and there 

are also validation and calibration data limitations to modelling the change directly, as 

explained here in Box 3.   

 

Box 3. Modelling change directly versus subtracting modelled snapshots  

While the SOC stock change can be modelled directly with temporally explicit dynamic 

process-based models, it is quite challenging to validate (and calibrate) such model 

predictions because of the lack of appropriate validation studies and reference data 

(Garsia et al., 2023; Le Noë et al., 2023). (Also see Section 5.4 of these guidelines, 

“Collect the Required Data.”) Overall, there is a shortage of SOC stock time series data 

at the spatial scale (extent and density) of typical SOC sequestration projects (Bradford 

et al., 2023; Lavallee et al., 2024). The projects themselves can generate this data 

when repeatedly measuring SOC data in situ for calculation of the sequestered SOC 

(see Table 3 in these guidelines for the calculation instructions), as described in 

Approach 1 for baseline and project scenario calculations in the SOC FM (Sections 6-

7, pp. 14-21). However, creating a time series of paired soil data points requires careful 

planning in both sampling and measurement. The full requirements are listed in Box 5 

in these guidelines. 

Because of these limitations, and in correspondence with the SOC FM, these guidelines 

focus on modelling the mean, total, and/or variance of the SOCt stock at temporal 

snapshots and determining the corresponding uncertainty for calculating the SOC stock 

change over time as the difference between two snapshot predictions.   

 

To quantify the SOC stock over the spatial boundaries of the project, the SOC FM allows 

for two distinct quantification approaches:1  

“Approach 1: ... On-site measurements to directly document baseline and project 

SOC stocks.  

Approach 2: ... Models from peer-reviewed publications to estimate baseline and 

project SOC stocks. Project developers need to prove that [the models] are 

conservative and applicable to the project site and management practice. ... 

Models derived locally may be applied only if validated by direct measurements in 

the project area (Approach 1). Generally, project developers shall select the most 

specific approach possible with the data available, giving preference to local data 

sources and models.” (SOC FM, p. 12)  

 
1 Approach 3: Default factors to estimate SOC changes, relating to the general Tier 1/2 model described in the Intergovernmental Panel 

on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC 2019) is not relevant to the types of models covered 

in these guidelines. 

https://www.zotero.org/google-docs/?qlvsUH
https://www.zotero.org/google-docs/?zqKi6D
https://www.zotero.org/google-docs/?zqKi6D
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In estimation statistics, these two approaches are coined design-based (Approach 1) 

versus model-based (Approach 2) estimation respectively (Särndal et al., 2003). From 

here on, we will use these terms instead of Approach 1 or 2 respectively, as they are 

more generally applicable beyond the scope of the SOC FM.  

While purely model-based estimation is generally permitted under the SOC FM, it is 

clearly stated that the model shall be previously validated against direct measurements 

in the project area. When direct measurements are not available before the start of the 

project, such measurements can be taken and then used for dual use: for validating the 

model for the project and for design-based estimation. Also prior to or during design-

based estimation, a model can be used as follows:   

• To determine where and how many soil samples shall be taken in the prescribed 

stratified random sampling design as noted in Section 16.2 of the SOC FM (pp. 

35-36). To determine how many samples (soil pits) are required, an estimate of 

the variance of SOC is needed as described in Section 5.4.2 of these guidelines, 

“Requirements for Data Collection.” This estimate of the variance can be obtained 

through modelling.  

• In addition to the sampled ground-measured observations in a model-assisted 

estimation process to increase the precision of the estimate. (Brus, 2000)    

Thus, the modelling goals can be threefold in the SOC FM (also see Box 1 in these 

guidelines):  

1. Variance estimation for informing design-based estimation of SOC 

stocks: Modelling the variance of SOC stock within the project’s spatial 

boundaries to determine the number of required soil samples to take and 

draw the stratum boundaries (modelling units) for taking soil samples.  

2. Model-assisted estimation of SOC stocks: Modelling a regression 

function in addition to the ground-measured samples for design-based 

estimation to increase the overall precision of the estimate.  

3. Model-based estimation of SOC stocks: Modelling the mean or total SOC 

stock as a snapshot at the start of the project or prior to any following 

verification event to quantify the creditable SOC sequestration for the 

respective calculation period.     

Throughout the life cycle of a SOC FM sequestration project, one, two, or all three of 

these modelling goals might be applied as shown in Box 4 below. This box presents a 

fictitious example and is not intended as a strict prescription. In particular, model-

assisted design-unbiased estimates can already be applied at t=0 without explicit model 

validation. Model-based estimates can also be used at t=0 if the models can be validated 

in accordance with Section 6.1 of these guidelines, “Validate the Model,” for the 

respective target variable on Data Sources B, C, or D (see Section 5.4.3 of these 

guidelines, ”How to Acquire Data”) with the respective safety discounts in Table 4 of 

these guidelines. 

 

 

https://www.zotero.org/google-docs/?cnPwVY
https://www.zotero.org/google-docs/?D5ELyD
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Box 4. Fictitious example of modelling SOC within a SOC FM project  

When there is not sufficient validation data at the start of a project, the first 

quantification rounds (i.e., for the baseline quantification at t=0 and for the first 

calculation period, e.g., at t=5 years) can be conducted via design-based estimation, 

where in parallel a model is calibrated and predictions are generated solely for the 

purpose of validating these predictions against the ground-measured observations as 

described in Section 6.1 of these guidelines, “Validate the Model.” After successful 

validation of the model for the baseline and the first calculation period, the model 

might be used for quantification in later calculation/crediting periods if permitted by 

the Gold Standard Secretariat and/or the responsible VVB in accordance with Section 

8 of the SOC FM (pp. 23-24).  

 

 

Only the purely model-based estimation of the mean or total SOC stocks over the 

project’s spatial boundaries requires strict model validation, as the validity and 

objectivity of the approach are not guaranteed without ground-measured observations 

to compare with the model predictions.  

5.2.2 Defining the Modelling Context  

In addition to determining whether the goal of the model is to assist with design-based 

estimation or conduct model-based estimation, the modelling context shall be specified 

with respect to the project’s spatial and temporal extent and the intended land 

management changes.   

SOC models are often developed and validated with data from specific ecosystems and 

land management practices. A model developed and validated with data from a specific 

spatial and temporal extent, climate zone and soil texture class, and/or for a specific 

type of agricultural land management might be valid and applicable in the same or similar 

context—but not necessarily in a different climate zone or soil texture class and/or for a 

different practice.  

The SOC FM prescribes that the project area shall be stratified into multiple modelling 

units with similar soil types, climate zones, and land management practices (further 
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differentiated in the SOC FM, Section 7, p. 20). As a consequence, the modelling 

objectives in different modelling units of the same project may be different. Projects with 

multiple modelling objectives may require selection, calibration, and validation of 

separate models for the individual modelling units since a single model may not be 

suitable for all modelling objectives.  

5.2.3 Requirements for Defining the Modelling Objectives and Context 

To effectively define the modelling objective(s), the following requirements shall be met:  

1. Project definition: Define the spatial and temporal boundaries of the project, 

activities, and land management changes in line with Chapter 4 of the SOC 

FM.  

2. Data collection: Collect and record project data and parameters as specified 

in Section 16.3 of the SOC FM, which includes:  

a) Project activity/land management change  

b) Project start and end dates  

c) Details of each farm/land parcel within the project boundaries, 

including unique identifiers, owner information, physical address, 

global positioning system (GPS) coordinates/geographic shape, land 

area and use, agrochemical and fertiliser usage, and fossil fuel and 

electricity consumption for baseline activities  

3. Contextual data: Gather data to establish representativeness of validation 

data to the project context, including climate zones, soil texture classes, 

vegetation types, and management history (for every modelling unit).  

5.2.4 How to Define the Modelling Objectives  

Defining the project and modelling objectives involves several key steps:  

a) Defining project boundaries and activities: Clearly delineate the spatial and 

temporal boundaries of the project and define the specific activities 

undertaken.  

b) Data collection and analysis: Collect detailed data on the farms and land 

parcels. The exact requirements are listed in Section 7.1 of these guidelines. 

Most of the relevant data shall be provided by the project developer. If the 

data is not readily available from the project developer, then do the 

following:  

• Search for the data in public data records or use published maps. 

• Implement soil sampling and measurement activities to obtain the 

required data.  

a) Stratify the project area into modelling units in line with Chapter 6 of the 

SOC FM.    
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b) Formulate the modelling objective(s) for the project as a whole or the 

individual modelling units as precisely as possible, including at least the 

following contextual information:  

• Target variable to be quantified (e.g., change in SOC stock)  

• Soil depth of interest  

• Project activity  

• Climate zone  

• Soil type  

 

Formulating the modelling objective in this detailed way will help in selecting the most 

suitable model and finding representative data for model calibration and validation. If 

any of the contextual information listed above differs between modelling units, the 

modelling objectives shall be stated individually for each modelling unit. In this case, 

different SOC models, different calibration data, and/or different validation data might 

be required for the different modelling units.  

5.2.5 Outputs of the Modelling Objective and Context Definition  

The project context shall be defined in line with Chapter 4 of the SOC FM. The project’s 

spatial and temporal boundaries shall be clearly delineated, and the project 

activity/activities shall be clearly defined. In addition to the requirements for data to be 

collected as listed in Sections 16.3 and 16.4 of the SOC FM, the data in this Table 1 shall 

be collected and submitted.  

 

Table 1. Expected output: geospatial file(s) (geojson, geopackage, or any 

other open standard geospatial file format) with the following data and 

metadata on every farm/parcel within the project’s spatial boundaries (one 

row per farm or parcel as appropriate) 

Attribute  Data Type  

Unique identifier  Numeric/Hash  

Descriptive name (name of the farm/parcel, address, 

landowner/project developer)  

Text  

Exact spatial boundaries of the total and eligible area 

(expected spatial accuracy within single-digit metres; if 

otherwise, report the spatial accuracy)    

Text (i.e, well-known 

text representation of 

geometry)  

Start date and end date of the crediting period  Text (yyyy-mm-dd)  

Modelling objective  Text  

Modelling unit to which the farm/parcel belongs  Text  

https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
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Climate zone as defined in the 2019 Refinements to the 

2006 IPCC Guidelines for National Greenhouse Gas 

Inventories (Reddy et al., 2019)  

Text  

Soil texture class and specifically the soil’s clay content in 

%  

Text/Numeric (clay 

%)  

Vegetation type (e.g., grasses, legumes, non-legume 

broadleaf species) 

Text  

Current land use  Text  

Management history (land use changes), historic 

vegetation types, tillage techniques, and fertilisation  

Text  

 

In addition, the modelling goal shall be clearly communicated when the project context 

definition is submitted to the Gold Standard Secretariat as one of the goals noted in 

Section 5.2.1 of these guidelines, “The Potential SOC Modelling Goals.”  

 

5.3 Select an Appropriate Model  

5.3.1 Model Selection Rationale  

This section provides general guidance on how to select appropriate SOC models to 

achieve the modelling objectives of a SOC sequestration project. It does not provide 

definite recommendations to use a specific SOC model in a specific project context. 

However, it is important that the chosen SOC model can be independently validated. To 

that end, the model’s predictions and simulations shall be fully reproducible and 

accessible, meaning a proper versioning of the model and associated data (including 

input data and random seeds for stochastic models) shall be available.  

5.3.2 Understanding SOC Models  

Before selecting a model, it's essential to understand the different types of SOC models 

and what they do. Process-based SOC models simulate the accumulation and/or loss of 

organic carbon in the soil. Statistical models use regression or machine learning 

algorithms to derive a quantification formula to determine the SOC stock (change) from 

input data and associated weights. Both types of models vary in complexity, scale, and 

the factors they incorporate, such as climate variables, land use, and management 

practices.  

The selection of an appropriate SOC model is critical for the success of a SOC 

sequestration project. The right model balances accuracy, complexity, data 

requirements, and resource availability. Carefully considering these factors and 

thoroughly evaluating available models ensure that a SOC sequestration project is based 

on reliable and relevant modelling outcomes.  

https://www.zotero.org/google-docs/?MvN9Ny
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5.3.3 Model Selection Requirements  

Key Considerations for Model Selection:  

a) Project context: The SOC model shall be appropriate for the project context (i.e., 

project activity, climate zone, soil type). Different models are designed for various 

scales, such as field level, regional, or continental assessments or changes on a 

daily, monthly, yearly, or decadal basis. Whether a model is appropriate can be 

judged only through model validation. When a model meets the requirements 

noted in Section 6.2.1 of these guidelines, it is deemed appropriate to the project 

context.  

b) Data availability and quality: In addition to the aforementioned validation data 

(Section 5.4 of these guidelines), the availability of input data (e.g., predictors, 

features, parameter sets, independent variables) shall be assessed. Some models 

need extensive input data, while others are less data-intensive. The choice of 

model may depend on the data that can be realistically obtained.  

c) Model complexity and usability: Models range from being simple and statistical  

(e.g., linear regression, one target/predictor variable, predicting single point in 

time) to being complex and process-based (e.g., DayCent, multiple internal 

variables, predicting at daily time steps). While complex models may provide more 

detailed insights, they require more data and computational resources. The team's 

expertise and resources in model operation shall be considered.  

d) Local calibration/training and validation: Check if the model can be 

calibrated/trained and validated with local data. A model’s performance greatly 

depends on its applicability to the local context of the project. Reserve some local 

data for validation that shall not be used for calibration/training purposes.   

e) Temporal and spatial resolution: Consider the temporal and spatial resolution 

needed for the project. Some models provide fine-scale, high-resolution outputs, 

while others work at coarser resolutions.  

f) Integration with other tools: Determine if the model needs to be integrated with 

other tools or models (e.g., geographic information system software, climate 

models). Some SOC models are standalone, while others are designed as part of 

larger environmental modelling suites.  

g) Model support and community: Consider the support available for the model, 

including documentation, user communities, and technical support. A well-

supported model can significantly ease the implementation process.  

5.3.4 How to Select a Model  

Steps in Selecting a SOC Model  

a) Define the project context as described in Section 5.2 of these guidelines, “Define 

the Modelling Objectives.”   
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b) Research available models: Conduct thorough research on existing SOC models, 

including their capabilities, limitations, and data requirements. (See the resources 

below.)  

c) Check prior validation: If one of the available models is already validated on the 

project context (e.g., same type of practice change, prior land use, soil texture 

class, and climate zone), it is possible to reuse the model.  

d) Evaluate data availability: Match the available data with the data needs of the 

models, taking into account both input and output data for calibration and 

validation.  

e) Shortlist suitable models: Based on the prior steps, create a shortlist of potential 

models.  

f) Compare the models: If possible, test the shortlisted models with a subset of the 

data to compare their performance as described in Section 5.3.5 of these 

guidelines, “Expected Model Selection Outputs.” 

g) Final selection: Choose the model(s) that best fit the project needs, considering 

performance, data availability, and resource constraints.  

 

Resources  

Garsia et al (2023) have compiled several resources on process-based SOC model 

selection and validation. Additional resources are available at the Model Portal of the 

International Soil Modelling consortium (ISMC, 2023).2 Remote sensing–based SOC 

models also have become popular in recent years (Dvorakova et al., 2023; Hengl et al., 

2021; Heuvelink et al., 2021; Poggio et al., 2021; Szatmári et al., 2021; Zepp et al., 

2021) and might be suitable. However, take care during the validation process to test 

these models on the right validation data.   

5.3.5 Expected Model Selection Outputs  

The output of the model selection process is one model per modelling unit of the project. 

The same model can be selected for multiple modelling units if the model can be validated 

for all of them. Any high-level model class (e.g., DayCent, RothC, Random Forest) that 

was considered and dismissed during the model selection process shall be recorded in a 

list, along with a short explanation of why it was dismissed.  

 

5.4 Collect the Required Data  

5.4.1 Rationale of Data Collection 

Any SOC model intended for use in a SOC sequestration project shall demonstrate 

reliable predictions for SOC stocks and corresponding uncertainty estimates. The only 

 
2 https://www.soil-modeling.org/resources-links/model-portal 

https://doi.org/10.1111/gcb.16896
https://www.zotero.org/google-docs/?2CPH7B
https://www.zotero.org/google-docs/?8xeuMI
https://www.zotero.org/google-docs/?8xeuMI
https://www.zotero.org/google-docs/?8xeuMI
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way to robustly carry out this analysis is by validating the model outputs against 

measured reference data. Data used for model validation is called validation data. 

Measured reference data can also be used during model calibration to fit a model to a 

specific project context or to select the best model from a set of candidate models. Data 

used for these purposes is called calibration data. This section provides the key 

requirements to consider when gathering validation and calibration data for SOC stock 

modelling.  

The SOC stock change data from the project site is required to ultimately validate the 

whole quantification procedure. However, such data rarely exists within the project 

spatial boundaries before or at the project start as it would require at least two SOC 

stock measurements over time. Ideally, the SOC stock change data should be obtained 

from diachronic (i.e., paired-at-same-location time series) data (Le Noë et al., 2023), 

i.e., it should be derived from time series of SOC stock data measured recurrently from 

the same location(s) at time t0 before a land management change was initiated and at 

times t1 (t2, t3, …, tn) some time (1-20 years) after the specific change was 

implemented. Since this data hardly exists in practice, the capacity to validate change 

predictions of the model is limited at the start of the project. Instead, what can be 

measured and validated is the spatial variation of SOC stocks at one point in time and 

the capacity of the model to predict the parameters (e.g., mean, variance) of this spatial 

distribution of SOC stocks at a single point in time. From the precision of this spatial 

estimation of a single point in time, the uncertainty for the calculation of the change as 

the difference between two single points in time can be calculated. (See Annex A.1 

Simulated Example)   

Over the course of the project, sufficient validation data shall be sampled and measured 

over time within the project’s spatial boundaries to allow for independent diachronic 

validation of the model, as Le Noë et al. (2023) suggest (see Figure 3 in these guidelines). 

This collected validation data can then be used to validate a model and opt for purely 

model-based estimation of the SOC stock in later calculation periods (as explained in Box 

6 in these guidelines).  
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Figure 3. Figure 1c from Le Noe et al. (Le Noë et al., 2023): “A schematic 

representation of (...) links (...) between SOC models and [the] empirical 

field”  

5.4.2 Requirements for Data Collection  

The validation data shall represent the different levels of SOC stocks:3 

a) The data shall be presented in units of tonnes of carbon per hectare [tC/ha].  

b) The SOC stock data shall be calculated as the product of the SOC concentration of 

the fine soil (sieved soil particles at <2mm) in [%] with the fine soil stock (FSS), 

i.e., the fine soil mass per unit area in [t/ha].  

1. If FSS is measured directly, Equations 3a and 3b in Table 2 in these 

guidelines shall be applied (Poeplau et al., 2017).  

2. If FSS is not measured directly, it shall be computed as the product of the 

(gravimetric) bulk density (g cm-3) of the fine soil and the soil depth (cm), 

deducted by the coarse fragment ratio (sieved soil particles at <2mm), as 

shown in Equation 4 in Table 2 in these guidelines.  

 
3 The data shall be representative of the project in terms of spatial extent (total area and radius), temporal extent (length of project and 

length of calculation periods), and the management practices taking place in the project scenario. 

https://www.zotero.org/google-docs/?broken=Kjglsn
https://www.zotero.org/google-docs/?lnaKKp
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3. When comparing two different measurements of a time series, the concept 

of equivalent soil masses (Wendt & Hauser, 2013) shall always be 

considered. See Equations 5a and 5b in Table 2 in these guidelines.      

c) To ensure comparability across datasets, the following data harmonization steps 

shall be taken prior to analysis: 

1. All SOC and bulk density (BD) values shall be converted to common depth 

intervals aligned with the modelling objective (e.g., 0–30 cm), using 

pedotransfer functions or depth-weighted averaging when necessary. 

2. Units shall be harmonized across all datasets (e.g., converting g/cm³ to t/ha 

or %SOC to g/kg where applicable). 

3. Differences in analytical methods (e.g., Walkley-Black versus dry 

combustion) shall be documented. When possible, correction factors shall 

be applied based on peer-reviewed cross-lab comparison studies. 

4. Metadata (e.g., sampling date, method, equipment, and lab technique) shall 

accompany all datasets to support transparent harmonization.  

The sampling units of the validation data shall be consistent with the prediction units 

of the model that is validated. For example, a model that produces farm-level predictions 

shall be validated using data that was sampled on a farm level.  

If there is a mismatch between sampling units and prediction units, the unit with the 

finer spatial granularity shall be aggregated (e.g., by calculating the mean SOC stock of 

point locations to represent the mean SOC stock at a field level) to match the unit with 

the coarser granularity. For example, if the SOC model produces farm-level predictions 

but SOC reference data is available at individual point locations sampled via probability 

sampling within farms, then all points within the boundaries of a farm shall be aggregated 

to provide a single farm-level mean reference value.  

The validation data from the project site shall capture the variance of the SOC stock 

within the spatial boundaries of the project with sufficient precision to quantify the 

changes within a 90% confidence interval (in correspondence to the uncertainty 

quantification of the SOC FM, Section 9, pp. 26-28). In cases where the sampled SOC 

reference data is aggregated (i.e., a field- or farm-level mean from point-level 

measurements) to be consistent with the prediction unit of the model, the thresholds 

apply after aggregation. The equations to calculate the required number of samples are 

shown in Box 5.  

The validation data shall be representative for the project context (modelling units):  

a) The validation data shall be sampled over the soil depth interval stated in the 

modelling objective (e.g., 0-30 cm or 0-50 cm).  

b) The validation data from within the project boundaries shall be collected in 

accordance with Section 16.2 of the SOC FM, pp. 35-36.       

c) Directed stratified sampling (with stratification based on additional data and 

composite samples aggregated within each stratum) shall be used in 

accordance with the protocols noted in the SOC FM (p. 44) or Annex 3.2 of the 

Food and Agricultural Organization (FAO) Global Soil Organic Carbon - 

https://www.zotero.org/google-docs/?fYkZLm
https://www.zotero.org/google-docs/?fYkZLm
https://www.zotero.org/google-docs/?fYkZLm
https://www.zotero.org/google-docs/?fYkZLm
https://www.zotero.org/google-docs/?fYkZLm
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Monitoring, Reporting, and Verification (GSOC MRV) Protocol (FAO, 2020, pp. 

89-91, referred to as “directed stratified sampling” in this protocol.) for any 

validation data. 

d) When previously collected data is used for model validation that was collected 

without following the directed stratified sampling design referenced above, 

justification shall be provided for how the data is unbiasedly representative of 

the project context (detailed further in Section 5.4.3 of these guidelines, “How 

to Acquire Data”). In the best case, the data was still sampled via a probability 

sampling design to satisfy the criterion of unbiasedness. 

For the calibration data, there are no hard requirements, although the data shall be 

similarly representative of the project context as the validation data to make model 

calibration most effective. However, data that does not satisfy some of the requirements 

for validation data may still be used as calibration data.4 This also means that calibration 

data does not need to come from within the project site itself. 

The validation data shall be statistically independent of the calibration data.  

a) To ensure statistical independence, the following criteria shall be fulfilled:  

1. The validation data and the calibration data shall be mutually exclusive, i.e., 

no single data point that is part of the validation data may be part of the 

calibration data and vice versa.  

2. The minimum geographical distance between any validation data point and 

any calibration data point shall be 30 metres. This entails that all data points 

taken at the same location at different points in time and different soil 

depths shall either be completely assigned to the validation data or 

completely assigned to the calibration data.  

b) Ideally, calibration data and validation data shall be drawn randomly without 

replacement from the same superpopulation of data (in the best case, from the 

same sampling campaign(s)). Care shall be taken to enforce the minimum 

distance constraint mentioned above.  

c) To prove that the above requirements are fulfilled:  

1. The model validation report shall clearly state the minimum geographical 

distance (in metres) between any validation data point and any calibration 

data point as well as the coordinate reference system in which the distance 

was computed.  

2. The geographical locations, time stamps, and soil depths of all validation 

data points and all calibration data points shall be made available as a 

geospatial file (geopackage, geojson, or other open standard geospatial file 

format) along with the model validation report allowing for simple 

verification of the minimum distance constraint. The actual measurements 

(e.g., SOC stock values) or model predictions for these data points may be 

 
4 These guidelines and the SOC FM evaluate the suitability of modelling SOC stock change quantification based on the model validation 

and verification. Before a model is allowed to be used for direct quantification with the SOC FM, it shall be validated as noted in Section 

6.1 of these guidelines. 

https://www.zotero.org/google-docs/?fYkZLm
https://www.zotero.org/google-docs/?fYkZLm
https://openknowledge.fao.org/server/api/core/bitstreams/e8781eb7-83c2-4ade-980b-f5872603bcb1/content
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omitted for reasons of confidentiality but shall be made available to the VVB 

upon request for the purpose of official validation and verification.  

When the goal is to collect or generate a time series of SOC stock data, special care shall 

be taken to guarantee the adequacy of the time series data, as explained in Box 6 in 

these guidelines.  

 

Table 2. Calculation of SOC stocks  

Method

  

Equation  Equation 

Number  

Poeplau 

FSS 

Method  

(Poepla

u et al., 

2017)  

  

where massfinesoil is given in [g], volumesample is given in [cm-3] 

and depth is given in [cm]; the resulting unit is [t/ha].  

  

  

where SOCconfinesoil is given in [%]; the resulting unit is [t/ha].  

3a  

  

  

  

  

3b  

BD 

Method  
𝑆𝑂𝐶𝑠𝑡𝑜𝑐𝑘 =𝑆𝑂𝐶𝑐𝑜𝑛𝑓𝑖𝑛𝑒 𝑠𝑜𝑖𝑙 ×𝐵𝐷𝑓𝑖𝑛𝑒 𝑠𝑜𝑖𝑙 ×𝑑𝑒𝑝𝑡ℎ ×(1−𝐶𝐹𝑅)  

  

where SOCconfine soil is given in [%], BDfine soil is given in [g cm-3], 

depth is given in [cm] and CFR is given in [%]; the resulting unit 

is [t/ha].  

4 

Equivale

nt soil 

masses  

(Wendt 

& 

Hauser, 

2013)  

  

where   

● MSOIL(DL) is the soil mass represented by a soil sample 

depth layer in Mg/ha.   

● MSAMPLE(DL) is the dry sample mass represented by a soil 

sample depth layer by the area sampled by the probe or 

auger in g. 

● π(D/2)2 is the cross-sectional area of the probe’s or 

auger’s inside diameter in mm. 

● N is the number of cores sampled. 

Furthermore:  

  

5a  

  

  

  

  

  

  

  

  

  

  

  

  

  

https://www.zotero.org/google-docs/?jaMpZr
https://www.zotero.org/google-docs/?jaMpZr
https://www.zotero.org/google-docs/?jaMpZr
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Table 2. Calculation of SOC stocks  

where   

MOC(DL) is the mass of organic carbon represented by a soil 

sample depth layer in kg/ha.  

COC(DL) is the concentration of organic carbon represented by a 

soil sample depth layer in g/kg.  

  

  

5b  

 

 

Box 5. Confidence interval-based estimation of sample size versus minimum 

detectable difference  

While many SOC sampling protocols and methodologies recommend the use of a 

minimum detectable difference (MDD) formula for determining the required sample 

size, we do not recommend this. The MDD is mainly intended for use in a statistical t-

test, which is not required as part of the SOC FM. Instead, a 90% confidence interval 

is required (SOC FM Section 9, pp. 26-28), which shall be sufficiently narrow to allow 

for robust quantification of SOC stock changes and to avoid excess uncertainty 

deductions. To determine the required sample size (for design-based estimation) for 

this 90% confidence interval, two things are needed:  

1. The desired degree of precision (or margin of error) in terms of SOC stock 

change  

2. An estimate of either the variance of SOC stock change (paired sampling 

scenario) or an estimate of the spatial variance of the SOC stock at the two 

temporal snapshots  

Correspondingly, there are two potential formulas for determining the required sample 

size:  

1. For paired sampling, with a change (temporal) variance estimate:  

  

Equation 6 

  

2. For independent sampling, with a spatial (snapshot) variance estimate:  

  

Equation 7 

  

Where:  

= required sample size  

= z-value of the normal distribution at confidence level 100(1-𝛼)% (two-sided)  
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𝛼 = significance level (for the SOC FM 90%CI 𝛼= 0.1)  

 = estimate of the variance of 1. SOC stock change 2. SOC stock snapshot  

= Desired margin of error (degree of precision)  

We strongly recommend that such derived sample sizes are the basis for any 

quantification approach (even model-based), as this allows for switching to a design-

based approach if a model falls short during verification. 

 

 

Box 6. Requirements for collecting SOC stock time series data  

While high-quality time series data can greatly simplify the model validation process 

for SOC sequestration projects, it is quite difficult to obtain such data. Creating a time 

series of paired soil data points requires careful planning in both sampling and 

measurement. Between the multiple measurements, consistency is key, i.e., the same 

sampling and measurement protocols shall be applied and preferably also the same 

devices and personnel to carry out the work.  

Sites shall be representative and accessible and shall be consistently sampled at fixed 

locations and regular intervals (at least in five-year intervals). Because of the well-

documented micro-scale variability of SOC stocks, composite samples within a spatial 

radius are required to establish SOC stock time series data. The spatial radius to cover 

the composite shall be recorded and shall be at least as large as the spatial imprecision 

of the GPS/global navigation satellite system (GNSS) device used to measure the 

(central) spatial location of the composite sample. Standardised protocols shall be used 

for collecting soil samples at consistent depths. Repeated sampling campaigns shall 

consider the equivalent soil mass principle (see Table 2 in these guidelines). Proper 

sample handling, including preservation and accurate labelling, is essential to prevent 

degradation. Detailed records of sampling conditions and environmental factors shall 

be maintained, and a robust data management system shall be used to organise data. 

Quality control measures, such as duplicates and calibration of equipment, are 

necessary to ensure accuracy. Finally, appropriate statistical methods shall be applied 

to analyse temporal trends in the data. This approach ensures reliable, consistent, and 

interpretable soil data over time.  

 

5.4.3 How to Acquire Data  

Validation data that fulfils the requirements noted above can be obtained from different 

sources. Depending on which data source is used, the data will be more or less 

representative of the project area. The following shall be considered for SOC model 

validation:  
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• Data Source A: Direct SOC measurements5 from within the project area  

• Data Source B: Direct SOC measurements from similar reference sites adjacent 

to the project area covering the same management changes as in the project 

scenario over the same spatial and temporal extent  

• Data Source C: Direct SOC measurements from similar reference sites not 

adjacent to the project area but covering the same management changes as in 

the project scenario over the same spatial and temporal extent  

• Data Source D: Direct SOC measurements from similar reference sites not 

adjacent to the project area, covering the same management changes as in the 

project scenario but over a different spatial or temporal extent  

 

It is strongly recommended to use validation data from Data Sources A or B to ensure 

maximal representativeness for the project area. Depending on the data source, 

additional uncertainty deductions might be applied by Gold Standard. The inclusion of 

Data Sources B, C, and D is a pragmatic approach for allowing project developers to 

validate and use models for estimation in the absence of validation data from the project 

site itself (i.e., in the first years of a project before resampling is conducted). As the 

project progresses and data is sampled from within the project’s spatial boundary over 

time for verification, the model shall be revalidated on this data from within the project’s 

spatial boundary to continue using the model for model-based estimates.    

For Data Sources B, C, and D, the similarity of reference sites to the project area shall 

be justified on the basis of the respective modelling unit defined in accordance with 

Sections 6 and 7 of the SOC FM (pp. 13-20), based on a common climate zone, soil 

texture class, vegetation type, and management history. This justification shall be 

included in the model validation report to allow independent assessment of the 

representativeness of the validation data for the project area.  

5.4.4 Outputs of Data Collection  

The main output of the data acquisition step is electronic files with all collected SOC 

reference data points used for model calibration and validation, i.e.:  

a) The measured SOC stock data points for all sampling units  

b) The exact dates when the individual samples were collected (and, optionally, the 

dates when they were analysed in the laboratory)     

c) The exact locations of the sampling units (point coordinates or exact spatial 

boundaries)  

d) The exact soil depth intervals at which the samples were collected  

Furthermore, the following metadata shall be recorded in the model validation report:  

 
5 ”Direct” means field-based, on-the-ground measurements using widely accepted soil sampling protocols (Aynekulu et al., 2011; FAO, 

2020). Soil spectrometry may be accepted if the statistical relationship with traditionally accepted field measurements is characterised as 

strong and verified for the project area. 

https://www.zotero.org/google-docs/?jM90yo
https://www.zotero.org/google-docs/?jM90yo
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e) The full description of the sample preparation before the lab analysis (e.g., 

compositing of samples, homogenisation, sieving, drying)  

f) The full description of the lab methods and measurements carried out (e.g., 

International Organization for Standardization [ISO] 10694 dry combustion, 

volumetric/gravimetric quantification of BD/coarse fragment ratio)  

g) The uncertainty of the lab measurements (if possible, the standard error of the 

mean of the lab measurements)  

Lastly, the model validation report shall contain:  

h) Proof that the validation data and the calibration data are statistically independent 

as described in Section 5.4.2 of these guidelines 

i) If Data Sources B, C, or D are used, justification that the sampled reference sites 

are similar to the project area, as described in Section 5.4.3 of these guidelines 

 

5.5 Calibrate the Model 

5.5.1 Rationale of Model Calibration  

Calibration/training is a critical step in ensuring the accuracy and reliability of a SOC 

model for a sequestration project. It involves adjusting the model parameters so that its 

outputs closely match observed data. Data representative of the project context and 

algorithms can be used to test and adjust the model parameters, such that the model 

predictions match the observed validation data. This section is a guide for the process of 

calibrating a SOC model for a specific project.  

Model calibration adjusts model parameters within plausible ranges to minimise the 

discrepancy between the model outputs and observed field data. This process fine-tunes 

the model to local conditions, enhancing its predictive accuracy.  

Calibration is a crucial process for adapting a SOC model to a specific sequestration 

project, thereby enhancing its predictive accuracy and reliability. Carefully gathering 

data, understanding model parameters, and iteratively refining the model through 

calibration and validation ensures that a SOC model provides valuable insights for 

effective carbon sequestration management. Calibration is not just a technical exercise; 

it's a critical step in aligning the model with the real-world dynamics of a project site.  

 

Calibration Challenges  

• Data limitations: Limited or low-quality data can constrain calibration accuracy.  

• Model structure: Inherent limitations in the model structure may prevent perfect 

calibration. Understanding these limitations is essential for interpreting model 

results.  

• Computational resources: Some calibration methods, especially automated ones, 

may require significant computational resources.  
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5.5.2 Calibration Requirements  

Considerations for Effective Calibration  

• Data quality: Ensure the quality and representativeness of the data used for 

calibration. High-quality data leads to more reliable calibration.  

• Temporal and spatial scale: Calibrate the model at a temporal and spatial scale 

that matches the project requirements.  

• Model complexity: The complexity of the model can impact the ease and 

effectiveness of calibration. More complex models may offer more detailed insights 

but may require more extensive calibration.  

• Uncertainty analysis: Acknowledge and analyse uncertainties that are inherent in 

the model and input data. Understanding these uncertainties is crucial for 

interpreting model predictions.  

5.5.3 How to Calibrate a Model  

A. Steps in SOC Model Calibration  

a) Gather local data: Collect field data relevant to SOC dynamics in the project area, 

including soil carbon measurements, soil properties (texture, pH, moisture), 

climate data, land use history, and management practices. This data forms the 

basis for calibration.  

b) Understand the model parameters: Get familiar with the parameters of the chosen 

SOC model. Understand which parameters are most influential and how they relate 

to the physical processes in the project area.  

c) Make initial parameter setting: Begin with default or literature-based parameter 

values. These values provide a starting point for calibration.  

d) Choose a calibration method: Common methods include manual calibration (trial 

and error), automated algorithms (e.g., genetic algorithms, Monte Carlo 

simulations, machine learning models), or a combination of both.  

e) Calibrate against measured reference data: Adjust the model parameters to 

minimise the difference between model predictions and measured reference data. 

Section 5.4 of these guidelines, “Collect the Required Data,” provides details on 

how to obtain calibration data. Use the statistical metrics from Section 5.3.3 of 

these guidelines, “Model Selection Requirements,” to quantify the model 

performance on the calibration data.  

f) Iterative Refinement: Calibration is an iterative process. Continuously refine the 

parameters and rerun the model until a satisfactory level of agreement is reached 

between the model outputs and observed data.  

g) Validation: After calibration, validate the model using a held-out validation dataset 

as described in Section 5.4 of these guidelines, “Collect the Required Data.” 

Successful validation ensures that the model is reliable and not just overfitted to 

the calibration data set.  
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B. Outputs of Model Calibration  

The foremost output is the final calibrated model. In addition, the calibration process 

shall be documented, and the documentation shall be submitted in the context of the 

project. The model’s name and version shall be documented together with a description 

of the data and the method that was used to calibrate/train the model.  

With the calibrated model, SOC stock snapshots or changes can be modelled in the 

project area and context. However, to officially use the model for quantification of SOC 

within the context of a SOC FM project, the model shall be appropriately validated, such 

that the uncertainty of model outputs and predictions can be quantified appropriately. 

Therefore, model validation, predictions, uncertainty quantification, and model 

verification are all covered in depth in the following section on uncertainty quantification. 

 

6. UNCERTAINTY QUANTIFICATION 

6.1 Validate the Model  

This and the following sections cover the official validation, prediction, and verification 

process when a model shall be used for purely model-based estimation of the SOC stocks 

within a project’s spatial boundaries. For simple design-based or model-assisted 

estimation, no official model validation or verification is required, as the SOC stock 

quantification is ultimately based on the sample of ground-measured observations. This 

holds true even when a model is used to quantify the variance to determine strata and 

the required sample size or for model-assisted estimation after the sampling process.  

6.1.1 Rationale of Model Validation  

The goal of model validation is to demonstrate that a SOC model is suitable for achieving 

the stated modelling objective for a given modelling unit within the project area. The 

SOC model selected for a modelling unit of the project area shall be able to accurately 

predict SOC stocks within that modelling unit and provide reliable uncertainty estimates. 

In the model validation process, the predictive accuracy of the model shall be assessed 

using independent observations (validation data) that are representative for the specific 

modelling unit and were not used for model selection or calibration. (See Section 5.4.2 

of these guidelines, “Requirements for Data Collection.”) The model validation metrics 

and thresholds are chosen to ensure that (1) the model is sufficiently calibrated to allow 

for the quantification of SOC stocks in the modelling units and (2) the model provides 

reliable uncertainty estimates.   

6.1.2 Validation Metrics  

The three metrics that shall be computed and assessed for model validation are:  

1. Bias  

2. Root mean squared error (RMSE)  

3. Coefficient of determination (R² score/R-squared)   
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Bias describes the average difference between the model predictions and the measured 

data. RMSE represents the approximate average error of the model on the level of the 

prediction unit. The R2 score describes the fraction of the variation in the measured data 

that is accounted for by the linear regression of predicted to ground-measured data.    

Definitions and short descriptions of every metric are given below. All required equations 

are listed in Table 3 in these guidelines.   

When computing these validation metrics, it is important to maintain consistency 

between the prediction unit of the model and the sampling unit of the validation data. 

Ideally, the prediction unit of the model is the same as the sampling unit of the validation 

data. For example, a model that provides farm-level SOC predictions should be validated 

using a dataset of farm-level SOC reference data, where each data point is a composite 

sample across a farm.  

If the prediction unit of the model differs from the sampling unit of the validation data, 

the finer unit shall be aggregated to match the coarser unit before the validation metrics 

are computed. For example, if the model produces predictions for individual points (in 

geographical space) and the validation data contains farm-level SOC reference data, all 

point predictions within the boundaries of a farm shall be aggregated to produce a farm-

level prediction. The validation metrics are then computed on a farm level.  

A SOC model can be validated only up to the spatial level of granularity (e.g., point, field, 

farm) of the sampling units of the validation data (or coarser), regardless of the 

prediction units. For example, a SOC model that produces predictions for individual points 

but was validated on farm-level SOC reference data is considered as validated only for 

farm-level predictions. The point predictions cannot be viewed as reliable unless they are 

validated on point-level SOC reference data.  

For simplicity, in the remainder of this section, it is assumed that the prediction units 

and the sampling units of the validation data are the same.  

Bias  

The Bias quantifies the structural error that leads to systematic overestimation or 

underestimation of the measured SOC reference data. The Bias is calculated by averaging 

the signed model errors/residuals (differences between model predictions and measured 

reference data). See Equation 17 in Table 3 in these guidelines. A positive Bias means 

the model tends to overestimate the measured values, whereas a negative Bias means 

the model tends to underestimate them. The absolute value of the Bias indicates how 

strongly the model overestimates or underestimates the mean of the measured reference 

data in units of the data (i.e., SOC stock [t/ha]). The Bias shall be close to zero to show 

that the model does not systematically overestimate or underestimate the measured 

values.   

RMSE  

The RMSE quantifies how close, on average, the predicted SOC values are to the 

observed SOC values. It is calculated by taking the square root of the mean squared 
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error (MSE). See Equation 18 in Table 3 in these guidelines. Since the individual errors 

are squared before averaging, larger errors are more strongly penalised than smaller 

errors. The MSE can be decomposed into the squared Bias and the variance of the model 

errors; for this reason, the RMSE jointly captures the Bias and the precision of a model. 

The RMSE has the same unit as the data (i.e., SOC stock [t/ha]) and ranges from zero 

to infinity. Lower RMSE values indicate a better model fit; the closer to zero, the better.  

R² score  

The R2 score quantifies the proportion of the variation of the measured reference data 

that is explained by the model. It can be used to assess how well a SOC model explains 

the variability of SOC on the ground. The R² is score is dimensionless and can take values 

between minus infinity and one. The value shall be positive for the model to be useful in 

practice. Higher R² values indicate a better fit of the model to the data; a value close to 

one means that the SOC model effectively explains all of the variability of SOC on the 

ground. When the mean of the ground measured observations is used as a prediction for 

all values in the dataset, the R² value will be zero. The R² score can be interpreted as a 

rescaled variant of RMSE that relates the model errors to the variance of the measured 

data. See Equation 19 in Table 3 in these guidelines.  

 

Table 3. Accuracy and uncertainty metrics  

Symbol/Name  Equation  Equati

on 

Numbe

r  

Single measured data point  , where    8 

Sequence of measured data 

points and indexed data point  
, where  

n = total number of data points or sample 

size  

and  

, where:  

 = unique index of an individual data 

point  

9  

9b 

  

9c  

Significance level  , typically chosen as 0.05 to correspond 

to 95% confidence  

10  

Single prediction at the 

prediction unit   
 where   

11 

Mean model prediction  

  

12  
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Table 3. Accuracy and uncertainty metrics  

Validation data mean  

  

13 

Variance of the validation data  

 

14  

Standard deviation of the 

validation data  
  

15  

Single model error/residual  
  

16  

Bias 

 

 

17 

RMSE  

  

18 

R2  

 

19 

Standard error of the validation 

data mean  
  

20 

Margin of error (MoE) of the 

two-sided 90% confidence 

interval around the validation 

data mean  

𝑀𝑜𝐸 = 𝑆𝐸 × 𝑡(1−0.9) 2⁄ ,𝑛−1  21  

Prediction interval with 

coverage probability  
  

where  is the upper bound of the 

interval (how these are calculated 

depends on the model)  

22 

Prediction interval coverage 

probability (mean of the 

interval coverage indicator 

function)  

  

with the indicator function 

23a 
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Table 3. Accuracy and uncertainty metrics  

   

  

23b 

Standard deviation of the 

interval coverage indicator 

function  

  

24  

Test statistic for the t-test to 

verify that the prediction 

interval coverage probability 

(PICP) is no less than 90%  

  

25  

 

6.1.3 Requirements for Model Validation  

For successful model validation, all of the metrics described above shall be computed 

and assessed on independent validation data, i.e., data that was not used for model 

selection or calibration. Section 5.4 of this document, “Collect the Required Data,” details 

the exact requirements for validation data and how it should be collected. If the modelling 

objectives of the project differ across modelling units, model validation shall be carried 

out separately for every modelling unit. All results of the model validation process shall 

be collected in a model validation report and made available for independent review.  

In a best-case scenario, there is an abundance of data that can be split into multiple 

validation datasets to (1) allow validation of candidate models during model selection 

and calibration and (2) for final model validation. If there is data scarcity, cross-validation 

can be used (Arlot and Celisse, 2010). See “Annex B: Requirements for Cross-Validation” 

in these guidelines. 

Once the final validation data has been determined, the metrics from Section 6.1.2 of 

these guidelines, “Validation Metrics,” shall be computed on that data. The following 

sections provide details on how the metrics shall be reported and which thresholds shall 

be satisfied.  

Requirements for Bias 

The model validation report shall demonstrate that the Bias of the model is close enough 

to zero. More specifically, the absolute value of the Bias on the validation data shall not 

be greater than the half-width of the two-sided 90% confidence interval around the 

validation data mean. This requirement ensures that the mean model prediction over the 

validation data lies within the confidence interval around the validation data mean and 

that the overall model error is smaller or equal to the accepted margin of error, as noted 

in Section 9 of the SOC FM (pp. 26-27).   

The model validation report shall contain a table showing the following:  

https://www.zotero.org/google-docs/?A5IqCR
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a) Number of validation data points  

b) Mean model prediction over the validation data points (see Equation 12 in 

these guidelines)  

c) Validation data mean (see Equation 13 in these guidelines)  

d) Standard error of the validation data mean (see Equation 20 in these 

guidelines)  

e) Half-width of the two-sided 90% confidence interval around the validation 

data mean (see Equation 21 in these guidelines)  

f) Bias value (see Equation 17 in these guidelines)  

 

“Example 1: Validation of Bias” in these guidelines demonstrates how the validation 

results can be presented in practice, including a visualisation of the above quantities. It 

is recommended but not required to add such a visualisation to the model validation 

report to facilitate interpretation of the results.  

Requirements for RMSE and R² score  

The model validation report shall demonstrate that the model captures variability of the 

validation data so that the individual model predictions are better than a mean prediction. 

More specifically, the RMSE computed on the validation data shall be less than the 

standard deviation of the validation data (Chai and Draxler, 2014). Equivalently, the R² 

score shall be greater than zero. 

The model validation report shall clearly state the relevant quantities and visualise the 

relationship between model predictions and measured data. In particular, the report shall 

contain a table showing:  

a) Number of validation data points  

b) Standard deviation of the validation data (see Equation 15 in these 

guidelines)  

c) RMSE computed on the validation data (see Equation 18 in these 

guidelines)  

d) R² score computed on the validation data (see Equation 19 in these 

guidelines)  

Furthermore, the validation report shall contain two scatter plots, each with 

corresponding linear regression lines (optionally including their confidence intervals) and 

1:1 lines for comparison:  

1. A regression plot shows the measured reference values of the validation data 

on the vertical axis (y-axis) and the model predictions on the horizontal axis 

(x-axis); the 1:1 line is the straight line that satisfies y = x.  

2. A residual plot shows the residuals on the vertical axis (y-axis) and the model 

predictions on the horizontal axis (x-axis); the 1:1 line is the straight line 

that satisfies y = 0. 

https://www.zotero.org/google-docs/?WpZxzI


 

36 
 

Systematic differences between the above-referenced plots and the corresponding 1:1 

lines may indicate model misspecification and shall be explained in the report. If there is 

evidence for heteroscedastic residuals in the plots (e.g., larger residual variance for 

larger predictions), the model validation report shall state how heteroscedasticity is 

addressed (e.g., by log-transforming the data), particularly in the light of providing 

conservative estimates for 𝚫CSOC, t-0.6 

Example 2 demonstrates how the validation results can be presented in practice and is 

based on the same data as Example 1. Both examples follow. 

   

Example 1: Validation of Bias 

 Table E1.1. Bias validation results  

Number of validation data points  93  

Mean model prediction  10.29 t/ha  

Measured validation data mean  11.81 t/ha  

Standard error of the validation data mean  1.19 t/ha  

Half-width of the 90% confidence interval around the 

validation data mean  

±2.36 t/ha  

Bias -1.52 t/ha   

    

 
6 The presence of systematic patterns or heteroscedasticity in the regression plot or residual plot indicates that model residuals are not 

statistically independent of the model predictions. A lack of this statistical independence would invalidate the statistical analyses 

commonly performed with empirical SOC models to quantify uncertainties of SOC stock or SOC stock change predictions, including model-

based geostatistical approaches (Szatmári et al., 2021) and design-based approaches as described in Annex A.3. 

https://www.zotero.org/google-docs/?p1bxpk
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Figure E1.2. Visualisation of the Bias validation results 

The absolute value of the Bias (1.52 t/ha) is not greater than the half-width of the 90% confidence 

interval around the estimated validation data mean (2.36 t/ha). The mean model prediction lies 

within the confidence interval. The location and scale of the t-distribution are given by the 

validation data mean and its standard error; the degrees of freedom are given by n - 1, where n 

is the number of validation data points.  

  

Example 2: Validation of RMSE and R² score  

 Table E2.1. RMSE and R² score validation results  

Number of validation data points  93  

Standard deviation of the validation data  11.42 t/ha  

RMSE  5.31 t/ha  

R² score  0.78  
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Figure E2.2. Scatter plots for RMSE and R² validation 

The plot on the left demonstrates that the model well approximates the measured values; the 

variability around the regression line is small compared to the total variability. In both plots, the 

regression lines are parallel to the respective 1:1 lines but do not match the 1:1 lines exactly due 

to the non-zero Bias. Apart from the Bias, there is no apparent structure in the plots, meaning 

that the model is well specified. In particular, there is no evidence for heteroscedasticity.  

6.1.4 How to Validate a Model 

Steps in the Final Model Validation  

For every modelling unit of the project, a suitable model shall be validated by performing 

the following steps:   

1. Use a hold-out validation dataset (a dataset that is independent of the data used 

at any stage during model calibration), as outlined in Section 5.4 of these 

guidelines, “Collect the Required Data.” 

2. Apply the final calibrated model on the validation data to obtain model predictions 

for every validation data point. The exact details of this step are model-

dependent.  

3. Calculate all validation metrics noted in Section 5.3.3 of these guidelines, “Model 

Selection Requirements,” as well as the threshold values and visualisations in 

Section 5.3.4 these guidelines, “How to Select a Model.”  

4. Make sure that all requirements from “How to Select a Model” are satisfied.  

Note that a single model may be applied in multiple modelling units but that the model 

shall be validated separately for each modelling unit in which it is applied.  

In cases where model validation does not succeed, other quantification approaches shall 

be used for the project, e.g., the design-based estimation approach (Approach 1 in 

the SOC FM) or the model-assisted estimation approach (as noted in Box 1 in these 

guidelines). Potentially, collecting more in situ data from the project area will enable 

better calibration and a successful validation of the model for later calculation/crediting 

periods. There is also the possibility of retrying validation with a different model selection, 

as described in Section 5.3 of these guidelines, “Select an Appropriate Model.”  
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6.1.5 Outputs of Model Validation  

A model validation report shall include for every modelling unit of the project:  

a) A table summarising the Bias validation result as described in Section 5.3.4 of 

these guidelines, “How to Select a Model,” with an optional visualisation of the 

quantities (see Example 1 in these guidelines).  

b) A table and two scatter plots summarising the RMSE and R² score validation results 

as described in “How to Select a Model” (see Example 2 in these guidelines).  

c) If cross-validation is used, a table summarising the distances between cross-

validation folds as described in “How to Select a Model” (see Example 3 in these 

guidelines).  

d) All data used to calculate the validation metrics (i.e., all model predictions with 

the corresponding measured reference values) shall be made available, along with 

the model validation report in a format that allows simple reproduction of the 

model validation results by an independent reviewer. Geographical locations, time 

stamps, soil depths, and any other information that would uniquely identify the 

data points in space and time may be omitted for reasons of confidentiality.  

 

6.2 Make Predictions and Estimate the Uncertainty of the 

Predictions  

6.2.1 Rationale of Predictions and Uncertainty Estimation  

Upon successful model selection, calibration, and validation, the SOC models shall be 

applied in the project context to issue carbon credits for the quantification period. For 

that purpose, model predictions shall be made for every prediction unit in every 

modelling unit, and all quantities required to issue carbon credits for the project shall be 

derived from these model predictions. In particular, the uncertainties of the predictions 

and all derived quantities shall be estimated to apply the required uncertainty deductions 

described in Section 9 of the SOC FM. An additional safety discount based on the source 

of the validation data shall be applied to account for the uncertainty about the 

applicability of a model in the project context.  

Uncertainty in SOC model outputs arises from various sources, including measurement 

errors in input data, variability in environmental conditions, model structural 

inadequacies, and parameter uncertainties. All of these uncertainties can propagate 

through the model and affect the model predictions and derived quantities. Therefore, 

statistically sound quantification of the uncertainties of the SOC model outputs is critical 

for any model-based SOC sequestration project.  

Details on how uncertainties shall be expressed and which uncertainties shall be 

quantified are given below, along with examples for different uncertainty quantification 

approaches. Whether an uncertainty quantification approach is suitable for a specific 

model highly depends on the model and must be theoretically well justified. The chosen 

quantification approach shall be tested for its reliability within the project context as part 
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of the model validation process. (See Section 5.3 of these guidelines, “Select an 

Appropriate Model.”)  

A type of higher-level uncertainty that is particularly hard to quantify is the uncertainty 

about whether the model is applicable in the project context (and provides reliable 

uncertainty estimates in the first place). Model applicability crucially depends on the 

representativeness of the validation data for the project context. Therefore, these 

guidelines define an additional safety discount depending on the data source of the 

validation data. (See Section 5.4.3 of these guidelines, “How to Acquire Data.”) The 

safety discount must be added to the uncertainty deductions noted in Section 9 of the 

SOC FM.  

6.2.2 Requirements for Predictions and Uncertainty Estimation  

The following SOC model outputs must be computed:  

a) SOC stock predictions for every prediction unit of every modelling unit of the 

project  

b) The mean of these SOC stock predictions over the entire project area  

Uncertainty estimates shall be provided for all of these SOC model outputs. Uncertainties 

shall be expressed using two-sided (bounded) intervals that contain the quantity of 

interest with a nominal coverage probability of 90%. The exact way the intervals are 

constructed and interpreted depends on the model and the underlying probability 

interpretation (frequentist or Bayesian). The following types of intervals are allowed for 

uncertainty quantification:  

• Confidence intervals, whenever the model regards a quantity as a fixed but 

unknown population parameter (frequentist perspective)  

• Prediction intervals, whenever the model regards a quantity as an unobserved 

random variable (frequentist perspective)  

• Credible intervals (prior intervals, posterior intervals), whenever the model 

regards a quantity as an unobserved random variable (Bayesian perspective) 

Which type of interval is suitable for a specific SOC model output depends on the model:  

● In a classical regression approach based on probability samples, the individual 

predictions would be considered random variables (with associated prediction 

intervals), while the mean values and mean difference values would be considered 

fixed but unknown population parameters (with associated confidence intervals).   

● When following a geostatistical model-based approach, the individual predictions 

at each modelling unit and their means would be random variables, and prediction 

intervals for all of these quantities would be provided.   

● In a process-based model, uncertainties would be computed in a Bayesian way by 

assuming prior distributions on the input parameters and constructing credible 

intervals for all quantities using Monte Carlo simulations (effectively treating all 

model outputs as unobserved random variables).  



 

41 
 

The process of model validation should ensure that the model is suitable for the declared 

modelling objectives within the project’s spatial boundaries. For model-based estimation 

approaches, spatial, temporal, and spatial-temporal autocorrelation shall be properly 

evaluated and taken into account during prediction and uncertainty estimation. For an 

example of how to do this, see “Annex A: Quantification of SOC Stock Change Using 

Digital Soil Mapping” in these guidelines. 

6.2.3 How to Predict and Estimate Uncertainties  

The exact steps and equations to obtain the SOC model outputs and associated 

uncertainties described above are highly model-dependent. Therefore, only general 

guidance is given here:   

1. Run the SOC model(s) on every prediction unit of every modelling unit to obtain 

SOC stocks for the start and end of the respective calculation period.7   

2. Calculate the total SOC stocks for the project scenario across all modelling units 

with Equation 6 of the SOC FM (p. 20) for the start and end of the respective 

calculation period.   

3. Estimate the uncertainties for the mean SOC stock change using well-established 

statistical methods from textbooks or peer-reviewed literature that are suitable 

for the specific SOC model. The methods may involve one or more of the 

following:  

• Monte Carlo simulations to obtain credible intervals for process-based 

model outputs: Run the model multiple times with randomised inputs and 

internal parameter sets that follow strong prior distributions. Use the 

empirical quantiles of the simulated SOC model outputs to construct interval 

bounds.  

• Bootstrapping to obtain confidence intervals for population parameters in 

frequentist models: Create multiple bootstrap samples from the calibration 

data by random selection with replacement and estimate the parameter 

independently from every bootstrap sample. Use the empirical quantiles of 

the bootstrap replicates of the parameter estimate to construct interval 

bounds.  

• Quantile Regression (Koenker, 2005) to obtain prediction intervals in a 

regression model: Algorithms such as the Quantile Regression Forest 

(Meinshausen, 2006) or Conformalised Quantile Regression (Romano et al., 

2019) directly estimate prediction intervals from covariates.  

4. Calculate the model output uncertainty (UNC) defined in the SOC FM, Chapter 9, 

Step 3, Equation 11, by dividing the half-width of the interval around the SOC 

stock change prediction by the total SOC stock change estimate. 

 
7 Model-based estimation SOC stock predictions must be sent to the Gold Standard Secretariat and the VVB before the 

validation/verification data is sampled from the project area. This means that there can be a long time period between running the model 

for the start and end of the calculation period. On request by the VVB, the exact reproducible script or sequence of steps for running the 

model for any prediction used for quantification purposes in the project must be made available by the project developer. 

https://www.zotero.org/google-docs/?q2J6mF
https://www.zotero.org/google-docs/?LyxInJ
https://www.zotero.org/google-docs/?3DUt8v
https://www.zotero.org/google-docs/?3DUt8v
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5. Obtain the total uncertainty (TU) by adding a safety discount to UNC based on the 

data source of the validation data (Table 4 below) and proceed with Step 4 in the 

SOC FM, Chapter 9, using the TU. 

 

Table 4. Safety discounts based on data 

source 

Data Source Safety discount 

A 0% 

B 10% 

C 30% 

D 50% 

 

Table 4 provides a heuristic orientation for the safety discount, and the values of the 

safety discounts by data source for validation may be adjusted in coordination with the 

Gold Standard Secretariat and the respective project’s VVB. As the project continues, 

model validation shall be conducted on Data Source A as soon as it becomes available 

within the project. 

6.2.4 Outputs of Predictions and Uncertainty Estimation  

a) All SOC model outputs listed in Section 6.2.3 of these guidelines, “How to Predict 

and Estimate Uncertainties,” along with intervals that capture their uncertainties  

b) UNC as defined in the SOC FM 

c) TU that combines UNC and the safety discount  

 

6.3 Verify the Model Predictions  

6.3.1 Rationale for Model Verification  

Verifying the predictive performance of a SOC model within the context of a specific soil 

carbon sequestration project is the final critical step in model application. This process 

involves comparing the model predictions with actual outcomes to assess  accuracy and 

reliability in real-world conditions. This is sometimes referred to as “model true-up” 

(Lavallee et al., 2024). This section provides a comprehensive approach to verifying the 

prediction performance of a SOC model in a GS4GG SOC FM project.  

Understanding Model Verification  

Verification differs from calibration and validation as it specifically focuses on how well 

the model performs in predicting the quantities to calculate SOC stock change outcomes 

in the project.  

Verifying the prediction performance of a locally calibrated and validated SOC model is 

essential to ensure its effectiveness in a specific soil carbon sequestration project. This 

process not only tests the model accuracy in real-world scenarios but also builds 

confidence among stakeholders in its predictions. Successful verification involves a 

https://www.zotero.org/google-docs/?WbxlXK
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thorough comparison of model outputs with actual SOC data, continuous monitoring, and 

adaptability to refine the model as more data becomes available. Rigorously verifying 

the SOC model enhances its value as a reliable tool for guiding soil carbon sequestration 

efforts and contributing to broader climate change mitigation strategies.  

6.3.2 Requirements for Model Verification  

Considerations for Effective Verification  

a) Data quality and representativeness: The accuracy of model verification is heavily 

dependent on the quality and representativeness of the independent data used. 

Only data from Data Source A in Section 5.4.3 of these guidelines, “How to Acquire 

Data,” is allowed for model verification.  

b) Realistic expectations: Set realistic expectations for model performance. All 

models have inherent limitations and uncertainties.  

c) Adaptability: Be prepared to adapt the model if verification reveals significant 

discrepancies between predictions and observations.  

d) Stakeholder engagement: Involve stakeholders in the verification process to 

ensure transparency and build trust in the model's predictions.  

Challenges in Model Verification  

a) Data limitations: Limited availability of relevant, high-quality independent data 

can be a significant challenge.  

b) Dynamic environmental conditions: Changes in environmental conditions, such as 

unusual weather events or management practices, can impact model 

performance.  

c) Model complexity: Highly complex models might perform well in calibration and 

validation but might struggle in real-world applications.  

6.3.3 How to Verify a Model  

Steps in Model Verification  

a) Re-establish the verification criteria:   

1. The model must be unbiased (Bias < half-width of 90% confidence 

interval).  

2. The model error must be small (RMSE < Standard deviation of the 

verification data).  

3. The model must capture variability in the data (R2 > 0).  

b) Collect and prepare independent data: Gather independent SOC data from the 

project site (Data Source A) that was not used in the model calibration or 

validation. This data shall represent the conditions under which the model is 

expected to operate. The data shall be collected in line with well-established soil 

sampling protocols (Aynekulu et al., 2011; FAO, 2020).  

https://www.zotero.org/google-docs/?AHdJMy
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c) Run the model for prediction: Use the model to make predictions for the period 

and conditions corresponding to the independent data collected.  

d) Compare predicted and observed data: Compare the model's predictions with the 

observed SOC data. Quantify the model's predictive performance using the metrics 

from Section 6.1.2 of these guidelines, “Validation Metrics”: Bias, RMSE, R2 score. 

e) Analyse discrepancies: If discrepancies exist between predicted and observed 

values, analyse these differences to understand their causes. This may involve 

examining model assumptions, data quality, or unexpected environmental 

changes. If the model violates any of the verification criteria, the project proponent 

must submit a plan to address potential over- or under-issuance of Gold Standard 

Verified Emission Reductions (GS-VERs) due to the model’s predictions.  

f) Continuously monitor and update: Model verification is an ongoing process. The 

model's performance shall be verified at least every five years, and the model shall 

be updated as more data becomes available or as project conditions change.  

6.3.4 Outputs of Model Verification  

The required output of verification must be the verification data with all its metadata as 

described in Section 5.4.4 of these guidelines, “Outputs of Data Collection.” Additionally, 

the calculated verification metrics and documentation of whether the criteria were met 

shall be submitted.   

In case the model verification criteria were not met, a plan shall be submitted to describe 

how over- or under-crediting (issuance of GS-VERs) due to the model predictions is 

addressed by the project developer. The latest version of the performance shortfall 

guidelines8 shall provide the specific requirements for such potential over- or under-

crediting. If model predictions have failed verification, the project developer must notify 

the Gold Standard Secretariat and VVB immediately. Within a 90-day period, the project 

developer can conduct a root-cause analysis of the model’s shortcomings, improve the 

model via recalibration, and attempt to revalidate. Upon successful revalidation, the 

model can be applied for model-based estimations in the project context and same 

verification cycle/stage again. The revalidation shall follow the same procedure as noted 

in Section 6.1 of these guidelines and shall include the data from the verification event 

where the model predictions have failed. If the model cannot be revalidated, the project 

developer shall switch the quantification approach to direct measurements until a new 

version of the model can successfully be validated and applied again in the project 

context.     

 

7. MONITORING METHODOLOGY 

7.1. DATA AND PARAMETERS MONITORED 

Parameter ID 1 

 
8 Gold Standard Performance shortfall guidelines: https://globalgoals.goldstandard.org/501g-pr-performance-shortfall-guidelines/ 
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Data/Parameter:  𝛥CSOC, t-0 

Data unit: Mass of SOC in tonnes (Mg) 

Description: SOC mass change between time t=t and t=0 

Source of data: Directly modelled or derived as difference of SOCt - SOC0 

(See Equation 2) 

Measurement 

procedures (if any): 

  As appropriate to the measurement / estimation procedure. 

Monitoring 

frequency: 

Every calculation period 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 2 

Data/Parameter:  SOCt 

Data unit: Total mass of SOC in tonnes (Mg) 

Description: SOC mass snapshot at time t=t 

Source of data: Design-based (sampling), model-assisted, or model-based 

estimate 

Measurement 

procedures (if any): 

  As appropriate to the measurement / estimation procedure. 

Monitoring 

frequency: 

Every calculation period 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 3 

Data/Parameter:  UD 

Data unit: Unitless ratio ([0,1]) 

Description: Uncertainty deduction: proportion of 𝛥CSOC, t-0 that cannot be 

issued as credits and that shall be deducted because of the 

quantification uncertainty 

Source of data: Uncertainty estimation in line with a) design-based 

(sampling), b) model-assisted, or c) model-based estimates 

as noted in Section 6.2 of these guidelines. 

Measurement 

procedures (if any): 

-  
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Monitoring 

frequency: 

Every calculation period 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 4 

Data/Parameter:  MOC(DL)/SOC stock 

Data unit: Mass of SOC in tonnes per hectare (ha) (Mg/ha) 

Description: SOC stock: mass of SOC C per unit area over a fixed depth 

column 

Source of data: Modelled directly or calculated from Equation 3b, 4, or 5b in 

these guidelines 

Measurement 

procedures (if any): 

Measurements shall be in line with the FAO GSOC MRV 

protocol. 

Monitoring 

frequency: 

Every calculation period 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 5 

Data/Parameter:  MSOIL(DL) 

Data unit: Equivalent mass of fine soil in tonnes per ha (Mg/ha) 

Description: Mass of the fine soil (dried and sieved) 

Source of data: Measured from whole soil core used for organic carbon 

analysis, dried and sieved 

Measurement 

procedures (if any): 

  As appropriate to the measurement / estimation procedure. 

Monitoring 

frequency: 

Every calculation period, if a variant of design-based 

estimation is used 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 6 

Data/Parameter:  COC(DL)/SOCcon 
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Data unit: SOC concentration in % (gC/gSoil * 100%) 

Description: SOC concentration as measured by dry combustion and 

inorganic carbon removed 

Source of data: Measured fine soil mass (g, whole sample, dried and sieved) 

Measurement 

procedures (if any): 

  As appropriate to the measurement / estimation procedure. 

Monitoring 

frequency: 

Every calculation period, if a variant of design-based 

estimation is used 

QA/QC procedures: -  

Any comment: -  

 

 

Parameter ID 7 

Data/Parameter:  FSS 

Data unit: FSS in tonnes per hectare (Mg/ha) 

Description: Fine soil stock, calculated as the ratio of the mass of a dried 

and sieved soil core per the known volume of the untreated 

soil core 

Source of data: See Equation 3a in these guidelines. 

Measurement 

procedures (if any): 

  As appropriate to the measurement / estimation procedure. 

Monitoring 

frequency: 

Every calculation period, if the FSS method is used to 

determine the SOC stock 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 8 

Data/Parameter:  BDfine soil 

Data unit: BD of the fine soil in grams per cm3 (g/cm3) 

Description: Bulk Density, the mass of soil per unit volume, measured on 

a sub-sampled aliquot 

Source of data: Measured with the intact core method on field sampled data 

Measurement 

procedures (if any): 

  As appropriate to the measurement / estimation procedure. 
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Monitoring 

frequency: 

Every calculation period, if the BD method is used to 

determine the SOC stock (see Equation 4 in these guidelines) 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 9 

Data/Parameter:  n 

Data unit: Count (unitless) 

Description: (Estimated) number of (composite) samples in a design-

based estimation (sample size) 

Source of data: Estimated with Equations 6, 7 in these guidelines or 

determined by constraints of feasibility 

Measurement 

procedures (if any): 

  As appropriate to the measurement / estimation procedure. 

Monitoring 

frequency: 

Every calculation period, if a variant of design-based 

estimation is used 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 10 

Data/Parameter:  𝛼 

Data unit: Significance level (%) 

Description: The probability of incorrectly rejecting the null hypothesis 

(calling an effect significant although it is not) 

Source of data: Determined by project developer 

Measurement 

procedures (if any): 

  As appropriate to the estimation procedure. 

Monitoring 

frequency: 

Once determined, but reported every calculation period, if 𝛼 

changes for any reason 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 11 

Data/Parameter:  Xi 
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Data unit: Instance of a random variable (e.g., SOC stock or SOC stock 

change, units of the variable of interest apply, e.g., Mg/ha) 

Description: Random variable, e.g., SOC stock or SOC stock change 

Source of data: Ground measured data (+ derived through Equations 3b, 4, 

5a in these guidelines) 

Measurement 

procedures (if any): 

  As appropriate to the measurement / estimation procedure. 

Monitoring 

frequency: 

Every calculation period, if some form of design-based 

estimation is used 

QA/QC procedures: -  

Any comment: -  

 

 

Parameter ID 12 

Data/Parameter:  s2(X); s2 for short 

Data unit: (Estimated) variance of a random variable (squared unit of 

measurement, e.g., (Mg/ha)2 for SOC stock variance) 

Description: (Estimated) variance of a random variable—measure of 

variability of the random variable around the arithmetic 

mean (sum of squared differences of measured data from the 

mean) 

Source of data: Estimated (e.g., through model predictions or based on 

design-based estimation) via Equation 14 in these guidelines 

Measurement 

procedures (if any): 

-  

Monitoring 

frequency: 

Every calculation period, if some form of design-based 

estimation is used 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 13 

Data/Parameter: 
  

Data unit: Arithmetic mean (e.g., SOC stock or SOC stock change; units 

of the variable of interest apply, e.g., Mg/ha) 

Description: Arithmetic mean of measured instances of a random variable 

Source of data: See Equation 13 in these guidelines. 
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Measurement 

procedures (if any): 

-  

Monitoring 

frequency: 

Every calculation period, if some form of design-based 

estimation is used 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 14 

Data/Parameter: 
 

Data unit: Standard error of the mean (e.g., SOC stock or SOC stock 

change; units of the variable of interest apply, e.g., Mg/ha) 

Description: Uncertainty measure of ground-measured (validation) data: 

standard error as standard deviation of the measured data 

divided by the square root of the number of samples n 

Source of data: See Equation 20 in these guidelines. 

Measurement 

procedures (if any): 

-  

Monitoring 

frequency: 

Every calculation period, if some form of design-based 

estimation is used 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 15 

Data/Parameter:  𝑋𝑖̂ 

Data unit: Instance of a model prediction of a random variable (e.g., 

SOC stock or SOC stock change; units of the variable of 

interest apply, e.g., Mg/ha) 

Description: Instance of a model prediction of SOC stock or SOC stock 

change 

Source of data: Model prediction 

Measurement 

procedures (if any): 

-  

Monitoring 

frequency: 

Every calculation period, when modelling is used for deriving 

the variance or mean estimate of SOC stock or SOC stock 

change 

QA/QC procedures: -  
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Any comment: -  

 

Parameter ID 16 

Data/Parameter:  𝑟𝑖 

Data unit: Instance of a residual (e.g., SOC stock or SOC stock change; 

units of the variable of interest apply, e.g., Mg/ha) 

Description: Instance of a residual of SOC stock or SOC stock change: 

difference between a measured instance of a random 

variable and a prediction of that instance of the random 

variable 

Source of data: See Equation 16 in these guidelines. 

Measurement 

procedures (if any): 

  As appropriate to the measurement / estimation procedure. 

Monitoring 

frequency: 

Every calculation period, when modelling is used 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 17 

Data/Parameter:  Bias 

Data unit: Units of the random variable in question, e.g., SOC stock or 

SOC stock change: Mg/ha 

Description: Model structural error: arithmetic mean of the residuals 

(without squaring residuals or taking the absolute value) 

Source of data: See Equation 17 in these guidelines. 

Measurement 

procedures (if any): 

-  

Monitoring 

frequency: 

Every calculation period, when modelling is used 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 18 

Data/Parameter:  RMSE 

Data unit: Units of the random variable in question, e.g., SOC stock or 

SOC stock change: Mg/ha 
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Description: Square root of the arithmetic mean of the squared residuals, 

showing the average error of the model and penalising 

greater residuals over lower residuals 

Source of data: See Equation 18 in these guidelines. 

Measurement 

procedures (if any): 

-  

Monitoring 

frequency: 

Every calculation period, when modelling is used 

QA/QC procedures: -  

Any comment: -  

 

Parameter ID 19 

Data/Parameter:  R2 score 

Data unit: Unitless ratio 

Description: Shows relationship of the mean squared error to the variance 

in the measured data 

Source of data: See Equation 19 in these guidelines. 

Measurement 

procedures (if any): 

-  

Monitoring 

frequency: 

Every calculation period, when modelling is used 

QA/QC procedures: -  

Any comment: -  
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8. ANNEXES 

Annex A: Quantification of SOC Stock Change Using Digital 

Soil Mapping  

 
Recent advances in digital soil mapping (DSM) have made it possible to quantify SOC 

stocks on a farm scale, regional scale, and global scale with decent accuracies. These 

DSMs are often produced with remote sensing-based statistical models and can be 

recomputed annually as soon as the required remote sensing data becomes available. 

For this reason, DSM is an appealing approach to quantifying SOC stock changes over 

time.  

This section exemplifies (1) how to validate a statistical model for DSM in the project 

context and (2) how to obtain statistically sound SOC stock change estimates from 

SOC stock maps produced by that model, including uncertainties. The statistical 

analysis follows a model-based approach and can be applied only when probability 

samples from the project area are available.  

A.1 Simulated Example  

To illustrate the approach, the spatial distribution of SOC stocks in a fictitious project 

area (“ground-truth”) and DSMs produced by a SOC model were simulated for two 

points in time, 2015 and 2020, before a hypothetical project start. In the simulation, 

it is assumed that SOC is in an equilibrium state and has roughly the same mean (~50 

t/ha) and the same standard deviation (~12 t/ha) in both years. Figure A.1 visualises 

the simulated ground-truth, model predictions, and model residuals, i.e., the 

differences between ground-truth and predictions. In practice, only the model 

predictions (DSMs) are available for the complete project area. Information about the 

ground-truth and residuals must be obtained by collecting soil samples.  

A.2 Model Validation With SOC Stock Data  

Validation of the model is demonstrated using SOC stock data only (not SOC stock 

change data). It is assumed that 100 soil samples have been taken with simple random 

sampling9 in 2015 and another 100 samples in 2020 for the sole purpose of model 

validation. These samples have not been used to calibrate the SOC stock model that is 

used to produce the DSMs.  

Figure A.2 depicts the locations of the soil samples taken in both years. It also shows 

the regression plots and residual plots mentioned in Section 5.3.4 of this document, 

 
9 Using simple random sampling or stratified simple random sampling with proportional allocation. Neyman allocation is not compatible 

with the statistical analysis used in this example. Random locations shall be selected independently in every time step. A sampling design 

in which the same locations are revisited in subsequent sampling rounds would also invalidate the analysis. 
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“How to Select a Model,” in this case, separately for the SOC stock predictions in the 

two years. Figure A.3 shows the regression plot and residual plot jointly for all 200 

SOC stock validation data points. Table A.4 shows the validation metrics and other 

quantities listed in “How to Select a Model,” computed separately for the SOC stock 

predictions in both years and as well as jointly for the two years.  

  

Figure A.1. Simulated ground-truth that shows the spatial distribution of SOC stocks in a 

fictitious project area in 2015 and 2020, before project start (A, D). Simulated model 

predictions (DSM) for the project area at the same points in time (B, E). Model residuals (C, 

F).  

The regression plots and scatter plots closely follow the expected patterns (diagonal 

lines and horizontal lines, respectively; there is no heteroscedasticity). They provide 

visual evidence that the model properly explains the variability of SOC stocks, 

individually at each time point and jointly across all time points. The validation metrics 

confirm this observation quantitatively in all cases:  

● The (absolute) Bias values are well below the margins of error of the validation 

data means (half-widths of the 90% confidence intervals). 

● The RMSE values are well below the standard deviations of the validation data. 

● the R² scores are well above zero.  
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With these observations, the SOC stock model is successfully validated for the project 

context.  

 

  

  

Figure A.2. Sampling locations of the validation data overlaid on the SOC stock ground-truth 

for 2015 and 2020 (A, D), along with regression plots (B, E) and residual plots (C, F) created 

separately for the two years. The regression plots and residual plots contain linear trend lines 

fitted to the respective data (blue lines), along with the corresponding 95% confidence intervals 

(shaded blue areas) and 1:1 lines for comparison (thin black lines).  
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Figure A.3. Regression plot (A) and residual plot (B) across all 200 SOC stock data points 

taken in 2015 and 2020, along with linear trend lines (blue lines), 95% confidence intervals 

(shaded blue areas), and 1:1 lines for comparison (thin black lines).  

 

 

Table A.4. Model validation metrics on SOC stock data  

Year  2015  2020  2015 + 2020  

Number of validation data points  100  100  200  

Mean model prediction  49.82 t/ha  48.42 t/ha  49.12 t/ha  

Validation data mean  49.69 t/ha  48.01 t/ha  48.85 t/ha  

Standard error of the validation 

data mean  1.26 t/ha  1.08 t/ha  0.83 t/ha  

Half-width of the 90% confidence 

interval around the validation data 

mean  ±2.09 t/ha  ±1.80 t/ha  ±1.37 t/ha  

Validation data standard deviation  12.57 t/ha  10.85 t/ha  11.74 t/ha  

Bias  -0.13 t/ha   -0.40 t/ha  -0.27 t/ha  

RMSE  7.40 t/ha  7.76 t/ha  7.59 t/ha  

R² score 0.65  0.48  0.58  
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A.3 Change Prediction and Uncertainty Estimation Exemplified 

The goal of this section is to showcase exemplarily how to obtain model-based 

estimates for the mean SOC stock change and its uncertainty in compliance with 

Section 6.2 of these guidelines, using the following: 

● DSMs produced by the SOC stock model during the project period  

● Soil samples taken with simple random sampling before the project period  

In this scenario, the main challenge is to temporally extrapolate the residuals computed 

from the soil samples into the project period and take them into account for statistically 

sound change prediction and uncertainty estimation. A geostatistical approach is not 

required due to the use of probability samples. Instead, two assumptions are made:  

1. The residuals are statistically independent of the model predictions.  

2. The residuals follow a temporal pattern that can be forecast into the project 

period.  

The first assumption is supported by the residual plots: There is no apparent 

relationship between the residuals and the model predictions and no indication of 

heteroscedasticity. (See “Annex B: Requirements for Cross-Validation” and Section 

5.3.4, “How to Select a Model,” in these guidelines.) The second assumption is much 

harder to verify without taking additional samples during the project period and will 

always be speculative until true-up. By assuming a model for the temporal behaviour 

of the residuals, the approach becomes model-based. There is a plethora of time series 

models (e.g., AR, ARIMA, etc.) that can be employed for this purpose (Hamilton 1994). 

The approach yields accurate estimates and uncertainties only if the model adequately 

represents the true temporal dynamics of the residuals. 

For simplicity, this example assumes that the residuals follow a linear trend over time.10 

For this purpose, a linear regression model can be fitted to the validation data residuals 

(as a function of time).11 The linear regression model is then used to forecast the 

residual mean into the project period. During the project period, the mean SOC stock 

in any given year is estimated as the sum of the mean SOC model prediction (mean of 

the DSM for that year) and the residual mean forecast from the linear regression model 

for that year. The mean SOC stock change from project start to any given year within 

the project period is estimated by subtracting the two SOC stock means obtained in 

the previous step. Uncertainties of the mean SOC stock predictions and the mean SOC 

stock change predictions are determined from the uncertainty of the residual mean 

forecast.   

The approach outlined above is visualised in this Figure A.5 for the simulated example 

from the previous section. All required equations to obtain SOC stock change estimates 

with uncertainties (as in Figure A.5.D) are listed in Table A.6.  

 
10 A linear trend in the residuals captures models that steadily improve over time (e.g., because more data becomes available to 

recalibrate a model) as well as models that steadily deteriorate (e.g., because a model was calibrated on historic data and is applied in 
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Figure A.5. Visualisation of a model-based SOC stock change quantification and uncertainty 

estimation approach based on SOC stock predictions, assuming a linear temporal trend in 

the residuals 

 

The dotted vertical lines in the plots indicate the project start, solid lines indicate 

mean predictions, and shaded areas indicate 90% confidence intervals (CIs) for the 

respective means. A: SOC stock validation data residuals shown as a function of 

time, along with a linear regression fit and a forecast of the residual mean into the 

project period. B: The linear regression model allows estimating the change of the 

residual mean from project start to any year within the project period. C: The mean 

 
conditions that are increasingly different from the historic calibration data). It also captures models with a constant performance over 

time (a zero trend), without assuming that the model performance is constant. 
11 A linear regression model can be fitted only if validation data from at least two points in time is available. If validation data from only 

one point in time is available, e.g., soil samples taken at project start, there is no information about the temporal behaviour of the 

residuals. As a workaround, if there is reason to believe that SOC was in an equilibrium state for, e.g., five years before the project start, 

it is permissible to assume that the soil samples taken at project start are also representative for the SOC distribution five years before. In 

this case, the validation data residuals should be split randomly (50:50), and half of the residuals should be treated as if the samples 

were taken five years before when fitting the linear regression model. 
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SOC stocks in any given year (before or after the project start) are estimated by 

adding the residual mean prediction of the linear regression model to the mean SOC 

stock prediction obtained from the SOC stock model. D: Resulting estimates for the 

mean SOC stock change from project start to any year within the project period.  

 

Table A.6: Equations for SOC stock change quantification with a linear residual 

model 

Inputs  Equation 

Number 

Validation data 

residuals of the SOC 

stock model  

  

26 

Validation data 

sampling times    

27 

Validation data 

residual mean    

28 

Validation data mean 

sampling time    

29 

SOC stock model 

mean prediction in 

the project area at 

time t (obtained from 

the DSM)  

  

30 

Linear regression parameters   

Slope  

  

31 

Intercept   32 

Regression error 

variance  

 

 

33 

SOC stock change estimator   

SOC stock mean 

change estimate  

from time t to time t’  

 

 

34 

Uncertainty   
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Margin of error of the 

SOC stock mean 

change estimate  
  

35 

 

Annex B: Requirements for Cross-Validation  

Cross-validation (Arlot and Celisse, 2010) may be used during model calibration and 

for validation of the final model. Cross-validation is a statistical technique to deal with 

the problem of data scarcity. During cross-validation, a dataset is randomly split into 

multiple non-overlapping data subsets (“folds”). The folds are used in an iterative 

process of model calibration and validation; in iteration, a single fold is used for model 

validation, while the other folds are used for model calibration. The overall model 

performance is then estimated by averaging the performance metrics obtained in each 

iteration. The following general requirements apply for cross-validation:  

• A minimum of five cross-validation folds shall be used (10 recommended) to 

reduce the cross-validation uncertainty.  

• The minimum number of data points per fold must be 20. In the special case of 

leave-one-out cross-validation, each fold may contain a single data point only.  

• Overall, a minimum of 100 data points shall be used for model calibration when 

opting for a cross-validation approach.  

The procedure that splits the data into different folds shall ensure that there is no data 

leakage from the training folds to the validation fold. During cross-validation, data 

leakage can happen in two ways:  

1. The exact same data point occurs in multiple cross-validation folds.  

2. A cross-validation fold contains a data point that is geographically very close to 

a data point that lies within a different fold.  

The first type of data leakage ca be avoided by following the standard cross-validation 

protocol. The second type of data leakage shall be addressed explicitly by enforcing a 

minimum geographical distance between the data points across different folds. The 

model validation report must demonstrate that the smallest geographical distance 

between any two data points from two different folds is greater than 30 metres.12  

For this purpose, the report shall contain a table with the smallest distances (in metres) 

between any two data points across every pair of folds, as in Example 3 below. In the 

special case of leave-one-out cross-validation, where each fold contains a single data 

point only, the report shall clearly state the smallest distance between any two 

validation points; there is no need to include the table with all pairwise distances. In 

 
12 This threshold was chosen to avoid data leakage due to imprecision of the GPS devices used to record the geographical locations. For 

example, two points may be taken at different depth intervals at the same location and stored along with two separate GPS devices. 

readings. Due to GPS device imprecision, the stored locations may be several metres apart. The threshold was explicitly not chosen to 

avoid spatial autocorrelation and achieve spatial independence under a specific geostatistical model. 

https://www.zotero.org/google-docs/?wGdcZf
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any case, the report shall indicate in which coordinate reference system the distances 

have been computed.  

Example 3: Validation of distances for five-fold cross-validation  

Table E3.1. Smallest pairwise point distances between cross-validation folds 

(EPSG:6933)  

Fold  1  2  3  4  5  

1  0 m  -  -  -    

2  242 m  0 m  -  -  -  

3  301 m  187 m  0 m  -  -  

4  193 m  115 m  221 m  0 m  -  

5  267 m  152 m  199 m  239 m  0 m  

  

Annex C: Table With Critical Values From the T-Distribution  
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Figure A.7. Table 6 from the SOC FM (p. 27): “t-values (tnp) applicable in Equation 8. 

Select appropriate tnp value depending on the number of samples (np) measured for 

parameter p.”  
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